Tomsk Polytechnic University, Tomsk, Russia.
University of Leeds, Leeds, UK.
Sci Rep. 2021 Apr 7;11(1):7582. doi: 10.1038/s41598-021-87174-2.
Invasive coronary angiography remains the gold standard for diagnosing coronary artery disease, which may be complicated by both, patient-specific anatomy and image quality. Deep learning techniques aimed at detecting coronary artery stenoses may facilitate the diagnosis. However, previous studies have failed to achieve superior accuracy and performance for real-time labeling. Our study is aimed at confirming the feasibility of real-time coronary artery stenosis detection using deep learning methods. To reach this goal we trained and tested eight promising detectors based on different neural network architectures (MobileNet, ResNet-50, ResNet-101, Inception ResNet, NASNet) using clinical angiography data of 100 patients. Three neural networks have demonstrated superior results. The network based on Faster-RCNN Inception ResNet V2 is the most accurate and it achieved the mean Average Precision of 0.95, F1-score 0.96 and the slowest prediction rate of 3 fps on the validation subset. The relatively lightweight SSD MobileNet V2 network proved itself as the fastest one with a low mAP of 0.83, F1-score of 0.80 and a mean prediction rate of 38 fps. The model based on RFCN ResNet-101 V2 has demonstrated an optimal accuracy-to-speed ratio. Its mAP makes up 0.94, F1-score 0.96 while the prediction speed is 10 fps. The resultant performance-accuracy balance of the modern neural networks has confirmed the feasibility of real-time coronary artery stenosis detection supporting the decision-making process of the Heart Team interpreting coronary angiography findings.
经皮冠状动脉造影术仍然是诊断冠状动脉疾病的金标准,其可能受到患者特定解剖结构和图像质量的影响。旨在检测冠状动脉狭窄的深度学习技术可能有助于诊断。然而,以前的研究未能实现实时标记的更高准确性和性能。我们的研究旨在证实使用深度学习方法实时检测冠状动脉狭窄的可行性。为了达到这个目标,我们使用 100 名患者的临床血管造影数据,对 8 种基于不同神经网络架构(MobileNet、ResNet-50、ResNet-101、Inception ResNet、NASNet)的有前途的探测器进行了训练和测试。有三个神经网络表现出了优异的结果。基于 Faster-RCNN Inception ResNet V2 的网络是最准确的,在验证子集上的平均准确率为 0.95、F1 得分为 0.96,预测速度最慢为 3 fps。相对轻量级的 SSD MobileNet V2 网络证明了自己是最快的,其平均准确率为 0.83、F1 得分为 0.80,预测速度为 38 fps。基于 RFCN ResNet-101 V2 的模型表现出了最佳的准确性与速度比。其平均准确率为 0.94、F1 得分为 0.96,而预测速度为 10 fps。现代神经网络的性能-准确性平衡证实了实时冠状动脉狭窄检测的可行性,支持心脏团队解释冠状动脉造影结果的决策过程。