Singh Vikas Kumar, Yadav Pradeep Kumar, Chandra Subhash, Bano Daraksha, Talat Mahe, Hasan Syed Hadi
Nano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221005, UP, India.
J Mater Chem B. 2018 Aug 28;6(32):5256-5268. doi: 10.1039/c8tb01286e. Epub 2018 Jul 31.
Interest is growing in the development of artificial enzymes to overcome the drawbacks of natural enzymes. Herein, we have synthesized nitrogen-sulphur dual-doped carbon quantum dots (NS-CQDs) via a one-step hydrothermal method; the NS-CQDs possess excellent optical properties and a high fluorescent quantum yield (46%). Significantly, the NS-CQDs exhibited peroxidase mimetic enzyme activity without support from metals or polymeric materials and efficiently catalyzed the oxidation of peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of HO to produce a blue solution with an absorption maximum at 652 nm. Mechanistic studies suggest that the small size and high electron density of NS-CQDs play vital roles and accelerate the reduction of HO to generate ˙OH radical, which facilitates the oxidation of TMB. The catalytic activity is based on Michaelis-Menten kinetic behavior, and steady state kinetic analysis suggests that the NS-CQDs exhibit a higher affinity for HO than TMB, similar to the natural enzyme horseradish peroxidase (HRP). Moreover, the catalytic pathway follows a ping-pong mechanism. Therefore, these findings offer a worthy platform for colorimetric detection of HO in a linear range of 0.02 mM to 0.1 mM with a limit of detection of 0.004 mM. Interestingly, the blue colour of oxidized TMB showed excellent selectivity over non-thiolate biological molecules, especially amino acids, and glutathione can be detected up to 0.07 μM via colorimetric and fluorimetric assays. Additionally, this system showed excellent recovery (96.0-108.3%) of GSH from human blood serum. Thus, the proposed sensing system is simple, convenient, and straightforward and can be potentially applied for real time monitoring of HO and glutathione in biological samples.
为克服天然酶的缺点,人们对人工酶的开发兴趣日益浓厚。在此,我们通过一步水热法合成了氮硫双掺杂碳量子点(NS-CQDs);NS-CQDs具有优异的光学性能和高荧光量子产率(46%)。值得注意的是,NS-CQDs在无金属或聚合物材料支持的情况下表现出过氧化物酶模拟酶活性,并在HO存在下有效催化过氧化物酶底物3,3,5,5-四甲基联苯胺(TMB)的氧化,产生在652nm处有最大吸收的蓝色溶液。机理研究表明,NS-CQDs的小尺寸和高电子密度起着至关重要的作用,并加速HO的还原以产生˙OH自由基,这促进了TMB的氧化。催化活性基于米氏动力学行为,稳态动力学分析表明,NS-CQDs对HO的亲和力高于TMB,类似于天然酶辣根过氧化物酶(HRP)。此外,催化途径遵循乒乓机制。因此,这些发现为比色检测HO提供了一个有价值的平台,线性范围为0.02 mM至0.1 mM,检测限为0.004 mM。有趣的是,氧化TMB的蓝色对非硫醇盐生物分子,尤其是氨基酸表现出优异的选择性,并且通过比色和荧光测定法可检测到高达0.07 μM的谷胱甘肽。此外,该系统在人血清中对谷胱甘肽的回收率极佳(96.0 - 108.3%)。因此,所提出的传感系统简单、方便且直接,可潜在地应用于生物样品中HO和谷胱甘肽的实时监测。