Suppr超能文献

深度学习中植物模型的应用:在莲座状植物叶片计数中的应用

The use of plant models in deep learning: an application to leaf counting in rosette plants.

作者信息

Ubbens Jordan, Cieslak Mikolaj, Prusinkiewicz Przemyslaw, Stavness Ian

机构信息

1University of Saskatchewan, 105 Administration Place, Saskatoon, S7N 5C5 Canada.

2University of Calgary, 2500 University Dr NW, Calgary, T2N 1N4 Canada.

出版信息

Plant Methods. 2018 Jan 18;14:6. doi: 10.1186/s13007-018-0273-z. eCollection 2018.

Abstract

Deep learning presents many opportunities for image-based plant phenotyping. Here we consider the capability of deep convolutional neural networks to perform the leaf counting task. Deep learning techniques typically require large and diverse datasets to learn generalizable models without providing an engineered algorithm for performing the task. This requirement is challenging, however, for applications in the plant phenotyping field, where available datasets are often small and the costs associated with generating new data are high. In this work we propose a new method for augmenting plant phenotyping datasets using rendered images of synthetic plants. We demonstrate that the use of high-quality 3D synthetic plants to augment a dataset can improve performance on the leaf counting task. We also show that the ability of the model to generate an arbitrary distribution of phenotypes mitigates the problem of when training and testing on different datasets. Finally, we show that real and synthetic plants are significantly interchangeable when training a neural network on the leaf counting task.

摘要

深度学习为基于图像的植物表型分析带来了诸多机遇。在此,我们探讨深度卷积神经网络执行叶片计数任务的能力。深度学习技术通常需要大量且多样的数据集来学习可泛化的模型,而无需提供执行该任务的工程算法。然而,对于植物表型分析领域的应用而言,这一要求颇具挑战性,因为可用数据集往往较小,且生成新数据的成本高昂。在这项工作中,我们提出了一种利用合成植物的渲染图像扩充植物表型分析数据集的新方法。我们证明,使用高质量的3D合成植物扩充数据集能够提高叶片计数任务的性能。我们还表明,模型生成任意表型分布的能力减轻了在不同数据集上进行训练和测试时的问题。最后,我们表明在叶片计数任务上训练神经网络时,真实植物和合成植物具有显著的可互换性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验