Suppr超能文献

DBU催化的脂肪酸几乎任何金属盐(M-FA)的一锅法合成:用于半导体纳米晶体合成的金属前体库。

DBU-Catalyzed One-Pot Synthesis of Nearly Any Metal Salt of Fatty Acid (M-FA): A Library of Metal Precursors to Semiconductor Nanocrystal Synthesis.

作者信息

Basel Siddhant, Bhardwaj Karishma, Pradhan Sajan, Pariyar Anand, Tamang Sudarsan

机构信息

Department of Chemistry, School of Physical Sciences, Sikkim University, Tadong, Gangtok 737102, Sikkim, India.

出版信息

ACS Omega. 2020 Mar 18;5(12):6666-6675. doi: 10.1021/acsomega.9b04448. eCollection 2020 Mar 31.

Abstract

The metal salts of fatty acid (M-FA) are the most widely used metal precursors to colloidal semiconductor nanocrystals (NCs). They play a key role in controlling the composition, shape, and size of semiconductor NCs, and their purity is essential for attaining impeccable batch-to-batch reproducibility in the optical and electrical properties of the NCs. Herein, we report a novel, one-pot synthesis of a library of highly pure M-FAs at near-quantitative yields (up to 91%) using 1,8-diazabicyclo[5.4.0]undec-7-ene or the related nonionic/noncoordinating base as an inexpensive and ecofriendly catalyst in a green solvent medium. The method is highly general and scalable with vast academic and industrial potential. As a practical application, we also demonstrate the use of these high-quality M-FAs in the synthesis of the spectrum of colloidal semiconductor NCs (III-V, II-VI, IV-VI, I-VI, I-III-VI, and perovskite) having absorption/emission in visible to the near-infrared region.

摘要

脂肪酸金属盐(M-FA)是用于制备胶体半导体纳米晶体(NC)的最广泛使用的金属前驱体。它们在控制半导体NC的组成、形状和尺寸方面起着关键作用,并且其纯度对于在NC的光学和电学性质方面实现无可挑剔的批次间重现性至关重要。在此,我们报道了一种新颖的一锅法合成高纯度M-FA库的方法,使用1,8-二氮杂双环[5.4.0]十一碳-7-烯或相关的非离子/非配位碱作为廉价且环保的催化剂,在绿色溶剂介质中以接近定量的产率(高达91%)进行合成。该方法具有高度通用性且可扩展,具有巨大的学术和工业潜力。作为实际应用,我们还展示了这些高质量的M-FA在合成具有从可见光到近红外区域吸收/发射的胶体半导体NC光谱(III-V、II-VI、IV-VI、I-VI、I-III-VI和钙钛矿)中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d1/7114616/4bd11ec93ce5/ao9b04448_0006.jpg

相似文献

2
Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
Acc Chem Res. 2015 Nov 17;48(11):2918-26. doi: 10.1021/acs.accounts.5b00362. Epub 2015 Nov 6.
3
Chemical Synthesis and Applications of Colloidal Metal Phosphide Nanocrystals.
Front Chem. 2019 Jan 8;6:652. doi: 10.3389/fchem.2018.00652. eCollection 2018.
4
Surface Engineering of Metal and Semiconductor Nanocrystal Assemblies and Their Optical and Electronic Devices.
Acc Chem Res. 2023 Jul 4;56(13):1791-1802. doi: 10.1021/acs.accounts.3c00147. Epub 2023 Jun 21.
5
Semiconductor Nanocrystals: Unveiling the Chemistry behind Different Facets.
Acc Chem Res. 2023 Jul 4;56(13):1756-1765. doi: 10.1021/acs.accounts.3c00123. Epub 2023 Jun 23.
6
Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals.
J Am Chem Soc. 2014 May 7;136(18):6550-3. doi: 10.1021/ja5006288. Epub 2014 Apr 22.
9
Shape control of colloidal Mn doped ZnO nanocrystals and their visible light photocatalytic properties.
Nanoscale. 2013 Nov 7;5(21):10461-71. doi: 10.1039/c3nr03160h. Epub 2013 Sep 16.
10
Flexible colloidal nanocrystal electronics.
Chem Soc Rev. 2019 Mar 18;48(6):1626-1641. doi: 10.1039/c8cs00629f.

引用本文的文献

1
Multi-technique structural analysis of zinc carboxylates (soaps).
Dalton Trans. 2023 May 9;52(18):6152-6165. doi: 10.1039/d3dt00184a.

本文引用的文献

1
Long-term ambient air-stable cubic CsPbBr perovskite quantum dots using molecular bromine.
Nanoscale Adv. 2019 Aug 12;1(9):3388-3391. doi: 10.1039/c9na00486f. eCollection 2019 Sep 11.
2
Enhanced Efficiency of InP-Based Red Quantum Dot Light-Emitting Diodes.
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):34067-34075. doi: 10.1021/acsami.9b07437. Epub 2019 Sep 9.
3
Triplet Energy Transfer from CsPbBr Nanocrystals Enabled by Quantum Confinement.
J Am Chem Soc. 2019 Mar 13;141(10):4186-4190. doi: 10.1021/jacs.8b13180. Epub 2019 Mar 4.
4
Lead-Halide Perovskites for Photocatalytic α-Alkylation of Aldehydes.
J Am Chem Soc. 2019 Jan 16;141(2):733-738. doi: 10.1021/jacs.8b08720. Epub 2019 Jan 8.
5
Self-Assembled High Quality CsPbBr Quantum Dot Films toward Highly Efficient Light-Emitting Diodes.
ACS Nano. 2018 Sep 25;12(9):9541-9548. doi: 10.1021/acsnano.8b05185. Epub 2018 Sep 12.
6
Nucleation and Growth Behavior of CdSe Nanocrystals Synthesized in the Presence of Oleylamine Coordinating Ligand.
Langmuir. 2018 May 29;34(21):6070-6076. doi: 10.1021/acs.langmuir.7b01337. Epub 2018 May 18.
7
Role of Acid-Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals.
ACS Nano. 2018 Feb 27;12(2):1704-1711. doi: 10.1021/acsnano.7b08357. Epub 2018 Feb 13.
8
Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals.
J Am Chem Soc. 2018 Feb 21;140(7):2656-2664. doi: 10.1021/jacs.7b13477. Epub 2018 Feb 12.
9
Why Does CuFeS Resemble Gold?
J Phys Chem Lett. 2018 Feb 15;9(4):696-701. doi: 10.1021/acs.jpclett.7b03190. Epub 2018 Jan 30.
10
Synthesis and characterization of AgS Se nanocrystals and their photoelectrochemical property.
Nanotechnology. 2017 Feb 10;28(6):065602. doi: 10.1088/1361-6528/aa523c. Epub 2017 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验