Ionita M, Crica L E, Tiainen H, Haugen H J, Vasile E, Dinescu S, Costache M, Iovu H
Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh. Polizu 1-7, Bucharest 011061, Romania.
J Mater Chem B. 2016 Jan 14;4(2):282-291. doi: 10.1039/c5tb02132d. Epub 2015 Dec 10.
The present work aims to develop new biocomposites based on gelatin (Gel) and poly(vinyl alcohol) (PVA) reinforced with graphene oxide (GO). On the one hand, the model is designed with consideration of the high performance of the aforementioned biopolymers as biomaterials; on the other hand, the original component of the system, GO, is expected to improve structural stability and boost mechanical strength. Porous Gel-PVA/GO materials with GO content ranging from 0.5 to 3 wt% are obtained by freeze-drying. Structural analysis by Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed the ability of well-dispersed GO nanosheets to form interactions with the polymers, leading to a unique molecular structuration. 3D analysis by X-ray microtomography (microCT) and scanning electron microscopy (SEM) suggests that GO has an influence on pore adjustment. According to mechanical tests, GO undoubtedly exhibits a beneficial effect on the polymer resistance against compressive stress, improving their compressive strengths by 97-100% with the addition of 0.5-3 wt% GO. Moreover, biological assessment using the MC3T3-E1 preosteoblast murine cell line indicated the fabrication of a cytocompatible composite formula, with potential for further in vivo testing and tissue engineering applications.
本研究旨在开发基于明胶(Gel)和聚乙烯醇(PVA)并由氧化石墨烯(GO)增强的新型生物复合材料。一方面,设计该模型时考虑到上述生物聚合物作为生物材料具有高性能;另一方面,该体系的原始组分GO有望提高结构稳定性并增强机械强度。通过冷冻干燥获得了GO含量为0.5至3 wt%的多孔Gel-PVA/GO材料。通过傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)和透射电子显微镜(TEM)进行的结构分析表明,分散良好的GO纳米片能够与聚合物形成相互作用,从而导致独特的分子结构。通过X射线显微断层扫描(microCT)和扫描电子显微镜(SEM)进行的三维分析表明,GO对孔隙调节有影响。根据力学测试,GO无疑对聚合物的抗压应力表现出有益作用,添加0.5-3 wt%的GO可使其抗压强度提高97-100%。此外,使用MC3T3-E1前成骨细胞小鼠细胞系进行的生物学评估表明,制备了一种具有细胞相容性的复合配方,具有进一步进行体内测试和组织工程应用的潜力。