Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136.
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136;
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8700-8710. doi: 10.1073/pnas.1922635117. Epub 2020 Apr 7.
Micron-scale robots require systems that can morph into arbitrary target configurations controlled by external agents such as heat, light, electricity, and chemical environment. Achieving this behavior using conventional approaches is challenging because the available materials at these scales are not programmable like their macroscopic counterparts. To overcome this challenge, we propose a design strategy to make a robotic machine that is both programmable and compatible with colloidal-scale physics. Our strategy uses motors in the form of active colloidal particles that constantly propel forward. We sequence these motors end-to-end in a closed chain forming a two-dimensional loop that folds under its mechanical constraints. We encode the target loop shape and its motion by regulating six design parameters, each scale-invariant and achievable at the colloidal scale. We demonstrate the plausibility of our design strategy using centimeter-scale robots called We use Brownian dynamics simulation to explore the large design space beyond that possible with kilobots, and present an analytical theory to aid the design process. Multiple loops can also be fused together to achieve several complex shapes and robotic behaviors, demonstrated by folding a letter shape "M," a dynamic , and a dynamic The material-agnostic, scale-free, and programmable nature of our design enables building a variety of reconfigurable and autonomous robots at both colloidal scales and macroscales.
微尺度机器人需要能够变形为任意目标形状的系统,这些形状由外部agents(如热、光、电和化学环境)控制。使用传统方法实现这种行为具有挑战性,因为在这些尺度上可用的材料不像其宏观对应物那样可编程。为了克服这一挑战,我们提出了一种设计策略,使机器人机器既可编程又与胶体尺度物理兼容。我们的策略使用以主动胶体颗粒形式存在的马达,这些马达不断向前推进。我们将这些马达一个接一个地连接成一个封闭的链,形成一个二维环,在其机械约束下折叠。我们通过调节六个设计参数来编码目标环形状及其运动,每个参数都是标度不变的,并且可以在胶体尺度上实现。我们使用称为 kilobots 的厘米级机器人来证明我们的设计策略的可行性。我们使用布朗动力学模拟来探索超出 kilobots 可能范围的大设计空间,并提出一个分析理论来辅助设计过程。还可以将多个环融合在一起,以实现几个复杂的形状和机器人行为,例如折叠字母形状"M"、动态形状和动态形状 我们设计的无材料、无标度和可编程性质使我们能够在胶体尺度和宏观尺度上构建各种可重构和自主机器人。