Birch M T, Cortés-Ortuño D, Turnbull L A, Wilson M N, Groß F, Träger N, Laurenson A, Bukin N, Moody S H, Weigand M, Schütz G, Popescu H, Fan R, Steadman P, Verezhak J A T, Balakrishnan G, Loudon J C, Twitchett-Harrison A C, Hovorka O, Fangohr H, Ogrin F Y, Gräfe J, Hatton P D
Centre for Materials Physics, Durham University, Durham, DH1 3LE, UK.
Diamond Light Source, Didcot, OX11 0DE, UK.
Nat Commun. 2020 Apr 7;11(1):1726. doi: 10.1038/s41467-020-15474-8.
Magnetic skyrmions are topologically nontrivial particles with a potential application as information elements in future spintronic device architectures. While they are commonly portrayed as two dimensional objects, in reality magnetic skyrmions are thought to exist as elongated, tube-like objects extending through the thickness of the host material. The study of this skyrmion tube state (SkT) is vital for furthering the understanding of skyrmion formation and dynamics for future applications. However, direct experimental imaging of skyrmion tubes has yet to be reported. Here, we demonstrate the real-space observation of skyrmion tubes in a lamella of FeGe using resonant magnetic x-ray imaging and comparative micromagnetic simulations, confirming their extended structure. The formation of these structures at the edge of the sample highlights the importance of confinement and edge effects in the stabilisation of the SkT state, opening the door to further investigation into this unexplored dimension of the skyrmion spin texture.
磁斯格明子是拓扑非平凡粒子,在未来自旋电子器件架构中有望作为信息元件应用。虽然它们通常被描绘为二维物体,但实际上磁斯格明子被认为是以细长的管状物体形式存在,贯穿主体材料的厚度。对这种斯格明子管态(SkT)的研究对于进一步理解斯格明子的形成和动力学以用于未来应用至关重要。然而,斯格明子管的直接实验成像尚未见报道。在此,我们利用共振磁X射线成像和对比微磁模拟,在FeGe薄片中对斯格明子管进行了实空间观测,证实了它们的扩展结构。这些结构在样品边缘的形成突出了限制和边缘效应在SkT态稳定中的重要性,为进一步研究斯格明子自旋纹理这一未探索维度打开了大门。