Suppr超能文献

网络聚合提高了葡萄基因共表达网络的基因功能预测。

Network aggregation improves gene function prediction of grapevine gene co-expression networks.

机构信息

Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia.

出版信息

Plant Mol Biol. 2020 Jul;103(4-5):425-441. doi: 10.1007/s11103-020-01001-2. Epub 2020 Apr 7.

Abstract

Aggregation across multiple networks highlights robust co-expression interactions and improves the functional connectivity of grapevine gene co-expression networks. In recent years, the rapid accumulation of transcriptome datasets from diverse experimental conditions has enabled the widespread use of gene co-expression network (GCN) analysis in plants. In grapevine, GCN analysis has shown great promise for gene function prediction, however, measurable progress is currently lacking. Using accumulated microarray datasets from the grapevine whole-genome array (33 experiments, 1359 samples), we explored how meta-analysis through aggregation influences the functional connectivity (performance) of derived networks using guilt-by-association neighbor voting. Two annotation schemes, i.e. MapMan BIN and Pfam, at two sparsity thresholds, i.e. top 100 (stringent) and 300 (relaxed) ranked genes were evaluated. We observed that aggregating across multiple networks improves performance dramatically, with the aggregate outperforming the majority of functional terms across individual networks. Network sparsity and size (i.e. the number of samples and aggregates) were key factors influencing performance while the choice of annotation scheme had little. Systematic comparison with various state-of-the-art microarray and RNA-seq networks was also performed, however, none outperformed the aggregate microarray network despite having good predictive performance. Repeating these series of tests using a functional enrichment-based performance metric also showed remarkably consistent findings with guilt-by-association neighbor voting. To demonstrate its functionality, we explore the function and transcriptional regulation of grapevine EXPANSIN genes. We envisage that network aggregation will offer new and unique opportunities for gene function prediction in future grapevine functional genomics studies. To this end, we make the aggregate networks and associated metadata publicly available at VTC-Agg (https://sites.google.com/view/vtc-agg).

摘要

跨多个网络的聚合突出了稳健的共表达相互作用,并提高了葡萄基因共表达网络的功能连通性。近年来,来自不同实验条件的转录组数据集的快速积累使得基因共表达网络 (GCN) 分析在植物中得到了广泛应用。在葡萄中,GCN 分析在基因功能预测方面显示出巨大的潜力,然而,目前还缺乏可衡量的进展。使用来自葡萄全基因组芯片(33 个实验,1359 个样本)的累积微阵列数据集,我们探讨了通过聚合进行荟萃分析如何通过关联邻居投票影响衍生网络的功能连通性(性能)。我们评估了两种注释方案,即 MapMan BIN 和 Pfam,以及两个稀疏度阈值,即排名前 100 个(严格)和 300 个(宽松)的基因。我们观察到,跨多个网络的聚合可以显著提高性能,聚合网络的性能优于大多数单个网络的功能术语。网络稀疏度和大小(即样本和聚合的数量)是影响性能的关键因素,而注释方案的选择影响较小。还与各种最先进的微阵列和 RNA-seq 网络进行了系统比较,但是,尽管具有良好的预测性能,没有一个网络能够超过聚合微阵列网络。使用基于功能富集的性能指标重复进行这些系列测试也显示出与关联邻居投票非常一致的结果。为了展示其功能,我们探讨了葡萄 EXPANSIN 基因的功能和转录调控。我们设想,网络聚合将为未来葡萄功能基因组学研究中的基因功能预测提供新的和独特的机会。为此,我们将聚合网络及其相关元数据在 VTC-Agg 上(https://sites.google.com/view/vtc-agg)公开提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验