Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France.
Institut de Biologie Moléculaire et Cellulaire, Plateforme Protéomique Strasbourg - Esplanade, CNRS FRC1589, Université de Strasbourg, 2, allée Konrad Roentgen Descartes, F-67084 Strasbourg, France.
Nucleic Acids Res. 2020 Jun 19;48(11):6170-6183. doi: 10.1093/nar/gkaa221.
Translation fidelity relies essentially on the ability of ribosomes to accurately recognize triplet interactions between codons on mRNAs and anticodons of tRNAs. To determine the codon-anticodon pairs that are efficiently accepted by the eukaryotic ribosome, we took advantage of the IRES from the intergenic region (IGR) of the Cricket Paralysis Virus. It contains an essential pseudoknot PKI that structurally and functionally mimics a codon-anticodon helix. We screened the entire set of 4096 possible combinations using ultrahigh-throughput screenings combining coupled transcription/translation and droplet-based microfluidics. Only 97 combinations are efficiently accepted and accommodated for translocation and further elongation: 38 combinations involve cognate recognition with Watson-Crick pairs and 59 involve near-cognate recognition pairs with at least one mismatch. More than half of the near-cognate combinations (36/59) contain a G at the first position of the anticodon (numbered 34 of tRNA). G34-containing tRNAs decoding 4-codon boxes are almost absent from eukaryotic genomes in contrast to bacterial genomes. We reconstructed these missing tRNAs and could demonstrate that these tRNAs are toxic to cells due to their miscoding capacity in eukaryotic translation systems. We also show that the nature of the purine at position 34 is correlated with the nucleotides present at 32 and 38.
翻译保真度主要依赖于核糖体准确识别 mRNA 上的密码子与 tRNA 的反密码子之间的三联体相互作用的能力。为了确定真核核糖体有效接受的密码子-反密码子对,我们利用 Cricket Paralysis Virus 基因间区 (IGR) 的 IRES。它包含一个必需的假结 PKI,在结构和功能上模拟了一个密码子-反密码子螺旋。我们使用结合了转录/翻译和基于液滴的微流控技术的超高通量筛选,筛选了整个 4096 种可能的组合。只有 97 种组合被有效地接受并适应易位和进一步延伸:38 种组合涉及沃森-克里克对的同源识别,59 种组合涉及至少一个错配的近同源识别对。超过一半的近同源组合(36/59)在反密码子的第一个位置含有 G(tRNA 的 34 号)。与细菌基因组相比,真核基因组中几乎不存在解码 4 密码子盒的 G34 含有 tRNAs。我们重建了这些缺失的 tRNAs,并证明这些 tRNAs 在真核翻译系统中由于其错配能力对细胞有毒。我们还表明,嘌呤在位置 34 的性质与位置 32 和 38 存在的核苷酸相关。