IBM Research, Cambridge, Massachusetts, United States.
Helmholtz Zentrum Mu¨ nchen, Germany.
AMIA Annu Symp Proc. 2021 Jan 25;2020:668-676. eCollection 2020.
Analyzing disease progression patterns can provide useful insights into the disease processes of many chronic conditions. These analyses may help inform recruitment for prevention trials or the development and personalization of treatments for those affected. We learn disease progression patterns using Hidden Markov Models (HMM) and distill them into distinct trajectories using visualization methods. We apply it to the domain of Type 1 Diabetes (T1D) using large longitudinal observational data from the T1DI study group. Our method discovers distinct disease progression trajectories that corroborate with recently published findings. In this paper, we describe the iterative process of developing the model. These methods may also be applied to other chronic conditions that evolve over time.
分析疾病进展模式可以为许多慢性疾病的发病机制提供有用的见解。这些分析可能有助于为预防试验招募提供信息,或者为受影响者制定和个性化治疗方案。我们使用隐马尔可夫模型(HMM)来学习疾病进展模式,并使用可视化方法将其提炼为不同的轨迹。我们将其应用于 T1DI 研究组的大型纵向观察性数据的 1 型糖尿病(T1D)领域。我们的方法发现了不同的疾病进展轨迹,与最近发表的发现相符。在本文中,我们描述了开发模型的迭代过程。这些方法也可以应用于随着时间的推移而演变的其他慢性疾病。