Department of Medical Imaging, Western University, London ON, Canada.
Department of Radiology, Beijing AnZhen Hospital, Beijing, China.
Med Image Anal. 2020 May;62:101668. doi: 10.1016/j.media.2020.101668. Epub 2020 Feb 26.
The elimination of gadolinium contrast agent (CA) injections and manual segmentation are crucial for ischemic heart disease (IHD) diagnosis and treatment. In the clinic, CA-based late gadolinium enhancement (LGE) imaging and manual segmentation remain subject to concerns about potential toxicity, interobserver variability, and ineffectiveness. In this study, progressive sequential causal GANs (PSCGAN) are proposed. This is the first one-stop CA-free IHD technology that can simultaneously synthesize an LGE-equivalent image and segment diagnosis-related tissues (i.e., scars, healthy myocardium, blood pools, and other pixels) from cine MR images. To this end, the PSCGAN offer three unique properties: 1) a progressive framework that cascades three phases (i.e., priori generation, conditional synthesis, and enhanced segmentation) for divide-and-conquer training synthesis and segmentation of images. Importantly, this framework leverages the output of the previous phase as a priori condition to input the next phase and guides its training for enhancing performance, 2) a sequential causal learning network (SCLN) that creates a multi-scale, two-stream pathway and a multi-attention weighing unit to extract spatial and temporal dependencies from cine MR images and effectively select task-specific dependence. It also integrates the GAN architecture to leverage adversarial training to further facilitate the learning of interest dependencies of the latent space of cine MR images in all phases; and 3) two specifically designed self-learning loss terms: a synthetic regularization loss term leverages the spare regularization to avoid noise during synthesis, and a segmentation auxiliary loss term leverages the number of pixels for each tissue to compensate for discrimination during segmentation. Thus, the PSCGAN gain unprecedented performance while stably training in both synthesis and segmentation. By training and testing a total of 280 clinical subjects, our PSCGAN yield a synthetic normalization root-mean-squared-error of 0.14 and an overall segmentation accuracy of 97.17%. It also produces a 0.96 correlation coefficient for the scar ratio in a real diagnostic metric evaluation. These results proved that our method is able to offer significant assistance in the standardized assessment of cardiac disease.
消除钆造影剂(CA)注射和手动分割对于缺血性心脏病(IHD)的诊断和治疗至关重要。在临床上,基于 CA 的晚期钆增强(LGE)成像和手动分割仍然存在潜在毒性、观察者间变异性和无效性的问题。在这项研究中,提出了渐进式序贯因果 GAN(PSCGAN)。这是首个一站式无 CA 的 IHD 技术,可同时从电影磁共振图像中合成等效 LGE 图像并分割与诊断相关的组织(即疤痕、健康心肌、血池和其他像素)。为此,PSCGAN 具有三个独特的特性:1)一个渐进式框架,该框架级联三个阶段(即先验生成、条件合成和增强分割),用于分割图像的划分和征服训练合成。重要的是,该框架利用前一阶段的输出作为先验条件输入下一阶段,并指导其训练以提高性能;2)顺序因果学习网络(SCLN),它创建了一个多尺度、双流途径和多注意力加权单元,从电影磁共振图像中提取空间和时间依赖性,并有效地选择特定于任务的依赖性。它还集成了 GAN 架构,利用对抗性训练进一步促进电影磁共振图像潜在空间中感兴趣依赖性的学习;3)两个专门设计的自学习损失项:合成正则化损失项利用稀疏正则化在合成过程中避免噪声,以及分割辅助损失项利用每个组织的像素数量来补偿分割过程中的歧视。因此,PSCGAN 在合成和分割的稳定训练中获得了前所未有的性能。通过对总共 280 名临床受试者进行训练和测试,我们的 PSCGAN 生成的合成归一化均方根误差为 0.14,整体分割准确率为 97.17%。在实际诊断指标评估中,疤痕比的相关系数也达到了 0.96。这些结果证明,我们的方法能够为心脏病的标准化评估提供重要帮助。