Department of Biological Sciences, University of Alberta, Edmonton, Canada.
Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada.
Appl Environ Microbiol. 2020 May 19;86(11). doi: 10.1128/AEM.00190-20.
Cross-feeding based on the metabolite 1,2-propanediol has been proposed to have an important role in the establishment of trophic interactions among gut symbionts, but its ecological importance has not been empirically established. Here, we show that growth of (syn. ) ATCC PTA 6475 is enhanced through 1,2-propanediol produced by UCC2003 and MG1655 from the metabolization of fucose and rhamnose, respectively. Work with isogenic mutants showed that the trophic interaction is dependent on the operon in , which encodes the ability to use 1,2-propanediol, and the l-fucose permease () gene in , which is required for 1,2-propanediol formation from fucose. Experiments in gnotobiotic mice revealed that, although the operon bestows a fitness burden on ATCC PTA 6475 in the mouse digestive tract, the ecological performance of the strain was enhanced in the presence of UCC2003 and the mucus-degrading species The use of the respective and mutants of and in the mouse experiments indicated that the trophic interaction was specifically based on 1,2-propanediol. Overall, our work established the ecological importance of cross-feeding relationships based on 1,2-propanediol for the fitness of a bacterial symbiont in the vertebrate gut. Through experiments in gnotobiotic mice that employed isogenic mutants of bacterial strains that produce () and utilize () 1,2-propanediol, this study provides mechanistic insight into the ecological ramifications of a trophic interaction between gut symbionts. The findings improve our understanding on how cross-feeding influences the competitive fitness of in the vertebrate gut and revealed a putative selective force that shaped the evolution of the species. The findings are relevant since they provide a basis to design rational microbial-based strategies to modulate gut ecosystems, which could employ mixtures of bacterial strains that establish trophic interactions or a personalized approach based on the ability of a resident microbiota to provide resources for the incoming microbe.
基于代谢物 1,2-丙二醇的交叉喂养被认为在肠道共生体之间建立营养相互作用方面具有重要作用,但它的生态重要性尚未得到经验验证。在这里,我们表明,通过分别由 UCC2003 和 MG1655 代谢岩藻糖和鼠李糖产生的 1,2-丙二醇,(syn. )ATCC PTA 6475 的生长得到增强。与同源突变体的合作表明,这种营养相互作用依赖于 中的 操纵子,该操纵子编码利用 1,2-丙二醇的能力,以及 中的 l-岩藻糖透酶()基因,该基因是从岩藻糖形成 1,2-丙二醇所必需的。无菌小鼠实验表明,尽管 操纵子在小鼠消化道中给 ATCC PTA 6475 带来了适应负担,但在存在 UCC2003 和粘液降解物种 的情况下,该菌株的生态性能得到了增强。在小鼠实验中使用 和 的相应 和 突变体表明,这种营养相互作用是基于 1,2-丙二醇的。总的来说,我们的工作确立了基于 1,2-丙二醇的交叉喂养关系对肠道共生体在脊椎动物肠道中适应性的生态重要性。通过使用产生()和利用()1,2-丙二醇的细菌菌株的同源突变体进行无菌小鼠实验,本研究为肠道共生体之间营养相互作用的生态后果提供了机制上的见解。研究结果提高了我们对交叉喂养如何影响肠道共生体在脊椎动物肠道中的竞争适应性的理解,并揭示了一种可能塑造物种进化的选择性力量。这些发现是相关的,因为它们为设计合理的基于微生物的策略来调节肠道生态系统提供了基础,可以利用建立营养相互作用的细菌菌株混合物,或者基于驻留微生物群落为进入的微生物提供资源的能力采用个性化方法。