Suppr超能文献

趋势:一个基于系统发育、结构域和基因邻域分析的探索原核生物蛋白功能的平台。

TREND: a platform for exploring protein function in prokaryotes based on phylogenetic, domain architecture and gene neighborhood analyses.

机构信息

Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA.

出版信息

Nucleic Acids Res. 2020 Jul 2;48(W1):W72-W76. doi: 10.1093/nar/gkaa243.

Abstract

Key steps in a computational study of protein function involve analysis of (i) relationships between homologous proteins, (ii) protein domain architecture and (iii) gene neighborhoods the corresponding proteins are encoded in. Each of these steps requires a separate computational task and sets of tools. Currently in order to relate protein features and gene neighborhoods information to phylogeny, researchers need to prepare all the necessary data and combine them by hand, which is time-consuming and error-prone. Here, we present a new platform, TREND (tree-based exploration of neighborhoods and domains), which can perform all the necessary steps in automated fashion and put the derived information into phylogenomic context, thus making evolutionary based protein function analysis more efficient. A rich set of adjustable components allows a user to run the computational steps specific to his task. TREND is freely available at http://trend.zhulinlab.org.

摘要

蛋白质功能计算研究的关键步骤包括分析(i)同源蛋白质之间的关系,(ii)蛋白质结构域架构和(iii)相应蛋白质编码的基因邻居。这些步骤中的每一步都需要单独的计算任务和工具集。目前,为了将蛋白质特征和基因邻居信息与系统发育相关联,研究人员需要准备所有必要的数据并手动将它们组合在一起,这既耗时又容易出错。在这里,我们提出了一个新的平台,TREND(基于树的邻居和结构域探索),它可以自动执行所有必要的步骤,并将派生的信息置于系统发育背景下,从而使基于进化的蛋白质功能分析更加高效。丰富的可调节组件集允许用户运行特定于其任务的计算步骤。TREND 可在 http://trend.zhulinlab.org 上免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7af/7319448/6dcf0fb6da9b/gkaa243fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验