Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
Curr Opin Cell Biol. 2020 Jun;64:77-89. doi: 10.1016/j.ceb.2020.02.016. Epub 2020 Apr 10.
Eukaryotic chromatin is a negatively charged polymer consisting of genomic DNA, histones, and various nonhistone proteins. Because of its highly charged character, the structure of chromatin varies greatly depending on the surrounding environment (i.e. cations etc.): from an extended 10-nm fiber, to a folded 30-nm fiber, to chromatin condensates/liquid-droplets. Over the last ten years, newly developed technologies have drastically shifted our view on chromatin from a static regular structure to a more irregular and dynamic one, locally like a fluid. Since no single imaging (or genomics) method can tell us everything and beautiful images (or models) can fool our minds, comprehensive analyses based on many technical approaches are important to capture actual chromatin organization inside the cell. Here we critically discuss our current view on chromatin and methodology used to support the view.
真核染色质是带负电荷的聚合物,由基因组 DNA、组蛋白和各种非组蛋白组成。由于其高度带电的特性,染色质的结构会根据周围环境(如阳离子等)而发生很大变化:从伸展的 10nm 纤维,到折叠的 30nm 纤维,再到染色质凝聚物/液滴。在过去的十年中,新开发的技术极大地改变了我们对染色质的看法,从静态的规则结构转变为更不规则和动态的结构,局部上像流体一样。由于没有一种单一的成像(或基因组学)方法可以告诉我们一切,而美丽的图像(或模型)可以欺骗我们的思维,因此基于多种技术方法的综合分析对于捕捉细胞内实际的染色质组织非常重要。在这里,我们批判性地讨论我们目前对染色质的看法,以及支持这种看法的方法学。