Suppr超能文献

单个生物细胞的全像虚拟染色。

Holographic virtual staining of individual biological cells.

机构信息

Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel.

QART Medical, 4366236 Ra'anana, Israel.

出版信息

Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9223-9231. doi: 10.1073/pnas.1919569117. Epub 2020 Apr 13.

Abstract

Many medical and biological protocols for analyzing individual biological cells involve morphological evaluation based on cell staining, designed to enhance imaging contrast and enable clinicians and biologists to differentiate between various cell organelles. However, cell staining is not always allowed in certain medical procedures. In other cases, staining may be time-consuming or expensive to implement. Staining protocols may be operator-sensitive, and hence may lead to varying analytical results, as well as cause artificial imaging artifacts or false heterogeneity. We present a deep-learning approach, called HoloStain, which converts images of isolated biological cells acquired without staining by holographic microscopy to their virtually stained images. We demonstrate this approach for human sperm cells, as there is a well-established protocol and global standardization for characterizing the morphology of stained human sperm cells for fertility evaluation, but, on the other hand, staining might be cytotoxic and thus is not allowed during human in vitro fertilization (IVF). After a training process, the deep neural network can take images of unseen sperm cells retrieved from holograms acquired without staining and convert them to their stainlike images. We obtained a fivefold recall improvement in the analysis results, demonstrating the advantage of using virtual staining for sperm cell analysis. With the introduction of simple holographic imaging methods in clinical settings, the proposed method has a great potential to become a common practice in human IVF procedures, as well as to significantly simplify and radically change other cell analyses and techniques such as imaging flow cytometry.

摘要

许多用于分析单个生物细胞的医学和生物学方案都涉及基于细胞染色的形态评估,旨在增强成像对比度,并使临床医生和生物学家能够区分各种细胞细胞器。然而,在某些医疗程序中并不总是允许进行细胞染色。在其他情况下,实施染色可能既耗时又昂贵。染色方案可能对操作人员敏感,因此可能导致分析结果的差异,并导致人为的成像伪影或虚假异质性。我们提出了一种称为 HoloStain 的深度学习方法,该方法可以将通过全息显微镜获取的未经染色的分离生物细胞的图像转换为其虚拟染色图像。我们以人类精子细胞为例展示了这种方法,因为对于生育力评估的染色人类精子细胞的形态特征已经有了完善的方案和全球标准化,但是另一方面,染色可能具有细胞毒性,因此在人类体外受精 (IVF) 期间不允许使用。经过训练过程,深度神经网络可以处理从未经染色的全息图中获取的看不见的精子细胞的图像,并将其转换为类似染色的图像。我们在分析结果中获得了五倍的召回率提高,证明了使用虚拟染色进行精子细胞分析的优势。随着简单的全息成像方法在临床环境中的引入,该方法有可能成为人类 IVF 程序中的常规实践,同时也极大地简化和彻底改变其他细胞分析和技术,如成像流式细胞术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验