Cai Lejuan, Zhang Ning, Qiu Bocheng, Chai Yang
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, P. R. China.
The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 51800, People's Republic of China.
ACS Appl Mater Interfaces. 2020 May 6;12(18):20448-20455. doi: 10.1021/acsami.0c02458. Epub 2020 Apr 22.
Electrocatalytic nitrogen reduction is promising to serve as a sustainable and environmentally friendly strategy to achieve ammonia production. Single-atom catalysts (SACs) hold great promise to convert N into NH because of the unique molecular catalysis property and ultrahigh atomic utilization ratio. Here, we demonstrate a universal computational design principle to assess the N reduction reaction (NRR) performance of SACs anchored on a monolayer PtS substrate (SACs-PtS). Our density functional theory simulations unveil that the barriers of the NRR limiting potential step on different SAC centers are observed to be linearly correlated to the integral of unoccupied d states (UDSs) of SACs. As a result, the Ru SAC-PtS catalyst with the largest number of UDSs exhibits a much lower barrier of the limiting step than those of other SACs-PtS catalysts and the Ru(0001) benchmark. Our work bridges the apparent NRR activity and intrinsic electronic structure of SAC centers and offers effective guidance to screen and design efficient SACs for the electrochemical NRR process.
电催化氮还原有望成为一种可持续且环境友好的制氨策略。单原子催化剂(SACs)因其独特的分子催化特性和超高的原子利用率,在将N转化为NH₃方面具有巨大潜力。在此,我们展示了一种通用的计算设计原则,用于评估锚定在单层PtS衬底上的单原子催化剂(SACs-PtS)的氮还原反应(NRR)性能。我们的密度泛函理论模拟表明,在不同单原子催化剂中心上,NRR限制电位步骤的能垒与单原子催化剂的未占据d态积分(UDSs)呈线性相关。因此,具有最多UDSs的Ru单原子催化剂- PtS催化剂的限制步骤能垒比其他单原子催化剂- PtS催化剂和Ru(0001)基准低得多。我们的工作搭建了单原子催化剂中心的表观NRR活性与本征电子结构之间的桥梁,并为筛选和设计用于电化学NRR过程的高效单原子催化剂提供了有效指导。