Yunnan University, Kunming, 650500, China; Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310013, China; Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China.
Yunnan University, Kunming, 650500, China.
Comput Biol Med. 2023 Mar;154:106537. doi: 10.1016/j.compbiomed.2023.106537. Epub 2023 Jan 16.
Electroencephalogram (EEG)-based emotion computing has become a hot topic of brain-computer fusion. EEG signals have inherent temporal and spatial characteristics. However, existing studies did not fully consider the two properties. In addition, the position encoding mechanism in the vanilla transformer cannot effectively encode the continuous temporal character of the emotion. A temporal relative (TR) encoding mechanism is proposed to encode the temporal EEG signals for constructing the temporality self-attention in the transformer. To explore the contribution of each EEG channel corresponding to the electrode on the cerebral cortex to emotion analysis, a channel-attention (CA) mechanism is presented. The temporality self-attention mechanism cooperates with the channel-attention mechanism to utilize the temporal and spatial information of EEG signals simultaneously by preprocessing. Exhaustive experiments are conducted on the DEAP dataset, including the binary classification on valence, arousal, dominance, and liking. Furthermore, the discrete emotion category classification task is also conducted by mapping the dimensional annotations of DEAP into discrete emotion categories (5-class). Experimental results demonstrate that our model outperforms the advanced methods for all classification tasks.
基于脑电图(EEG)的情绪计算已成为脑机融合的热门话题。EEG 信号具有固有 的时间和空间特征。然而,现有研究并未充分考虑这两个特性。此外,vanilla 变 换器中的位置编码机制无法有效地对情绪的连续时间特征进行编码。因此,提出了一种 时间相对(TR)编码机制来对情绪进行编码,以构建在变换中使用的时间自注意力。为了探索对应于大脑皮层上电极的每个 EEG 通道对情绪分析的贡献,提出了一种通道注意力(CA)机制。通过预处理,时间自注意力机制与通道注意力机制合作,同时利用 EEG 信号的时间和空间信息。在 DEAP 数据集上进行了详尽的实验,包括对效价、唤醒度、主导度和喜好度的二元分类。此外,还通过将 DEAP 的维度注释映射到离散情绪类别(5 类)来进行离散情绪类别分类任务。实验结果表明,我们的模型在所有分类任务上的性能均优于先进的方法。