Suppr超能文献

椎体骨髓炎和椎间盘炎患者手术与非手术干预的临床预测

Clinical prediction for surgical versus nonsurgical interventions in patients with vertebral osteomyelitis and discitis.

作者信息

Lee Jennifer, Ruiz-Cardozo Miguel A, Patel Rujvee P, Javeed Saad, Lavadi Raj Swaroop, Newsom-Stewart Catherine, Alyakin Anton, Molina Camilo A, Agarwal Nitin, Ray Wilson Z, Santacatterina Michele, Pennicooke Brenton H

机构信息

Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO, USA.

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

出版信息

J Spine Surg. 2024 Jun 21;10(2):204-213. doi: 10.21037/jss-23-111. Epub 2024 May 17.

Abstract

BACKGROUND

Vertebral osteomyelitis and discitis (VOD), an infection of intervertebral discs, often requires spine surgical intervention and timely management to prevent adverse outcomes. Our study aims to develop a machine learning (ML) model to predict the indication for surgical intervention (during the same hospital stay) versus nonsurgical management in patients with VOD.

METHODS

This retrospective study included adult patients (≥18 years) with VOD (ICD-10 diagnosis codes M46.2,3,4,5) treated at a single institution between 01/01/2015 and 12/31/2019. The primary outcome studied was surgery. Candidate predictors were age, sex, race, Elixhauser comorbidity index, first-recorded lab values, first-recorded vital signs, and admit diagnosis. After splitting the dataset, XGBoost, logistic regression, and K-neighbor classifier algorithms were trained and tested for model development.

RESULTS

A total of 1,111 patients were included in this study, among which 30% (n=339) of patients underwent surgical intervention. Age and sex did not significantly differ between the two groups; however, race did significantly differ (P<0.0001), with the surgical group having a higher percentage of white patients. The top ten model features for the best-performing model (XGBoost) were as follows (in descending order of importance): admit diagnosis of fever, negative culture, culture, partial pressure of arterial oxygen to fractional inspired oxygen ratio (PaO:FiO), admit diagnosis of intraspinal abscess and granuloma, admit diagnosis of sepsis, race, troponin I, acid-fast bacillus culture, and alveolar-arterial gradient (A-a gradient). XGBoost model metrics were as follows: accuracy =0.7534, sensitivity =0.7436, specificity =0.7586, and area under the curve (AUC) =0.8210.

CONCLUSIONS

The XGBoost model reliably predicts the indication for surgical intervention based on several readily available patient demographic information and clinical features. The interpretability of a supervised ML model provides robust insight into patient outcomes. Furthermore, it paves the way for the development of an efficient hospital resource allocation instrument, designed to guide clinical suggestions.

摘要

背景

椎体骨髓炎和椎间盘炎(VOD)是一种椎间盘感染,通常需要进行脊柱手术干预并及时治疗以防止出现不良后果。我们的研究旨在开发一种机器学习(ML)模型,以预测VOD患者手术干预(在同一住院期间)与非手术治疗的指征。

方法

这项回顾性研究纳入了2015年1月1日至2019年12月31日期间在单一机构接受治疗的成年VOD患者(≥18岁)(ICD-10诊断代码M46.2、3、4、5)。研究的主要结局是手术。候选预测因素包括年龄、性别、种族、埃利克斯豪泽合并症指数、首次记录的实验室值、首次记录的生命体征和入院诊断。在拆分数据集后,对XGBoost、逻辑回归和K近邻分类器算法进行训练和测试以开发模型。

结果

本研究共纳入1111例患者,其中30%(n = 339)的患者接受了手术干预。两组患者的年龄和性别无显著差异;然而,种族存在显著差异(P<0.0001),手术组白人患者的比例更高。表现最佳的模型(XGBoost)的前十大模型特征如下(按重要性降序排列):发热入院诊断、培养阴性、培养、动脉血氧分压与吸入氧分数比(PaO:FiO)、脊髓内脓肿和肉芽肿入院诊断、脓毒症入院诊断、种族、肌钙蛋白I、抗酸杆菌培养和肺泡-动脉氧分压差(A-a梯度)。XGBoost模型指标如下:准确率=0.7534,灵敏度=0.7436,特异度=0.7586,曲线下面积(AUC)=0.8210。

结论

XGBoost模型基于一些易于获得的患者人口统计学信息和临床特征,能够可靠地预测手术干预的指征。监督式ML模型的可解释性为患者结局提供了有力的见解。此外,它为开发一种高效的医院资源分配工具铺平了道路,该工具旨在指导临床建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a97/11224782/ff2deffc4151/jss-10-02-204-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验