Suppr超能文献

一种用于活动识别中手机的活动感知采样方案。

An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.

作者信息

Chen Zhimin, Chen Jianxin, Huang Xiangjun

机构信息

College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

出版信息

Sensors (Basel). 2020 Apr 13;20(8):2189. doi: 10.3390/s20082189.

Abstract

In recent years, sensors in smartphones have been widely used in applications, e.g., human activity recognition (HAR). However, the power of smartphone constrains the applications of HAR due to the computations. To combat it, energy efficiency should be considered in the applications of HAR with smartphones. In this paper, we improve energy efficiency for smartphones by adaptively controlling the sampling rate of the sensors during HAR. We collect the sensor samples, depending on the activity changing, based on the magnitude of acceleration. Besides that, we use linear discriminant analysis (LDA) to select the feature and machine learning methods for activity classification. Our method is verified on the UCI (University of California, Irvine) dataset; and it achieves an overall 56.39% of energy saving and the recognition accuracy of 99.58% during the HAR applications with smartphone.

摘要

近年来,智能手机中的传感器已广泛应用于诸如人类活动识别(HAR)等应用中。然而,智能手机的电量由于计算而限制了HAR的应用。为了解决这一问题,在使用智能手机进行HAR应用时应考虑能源效率。在本文中,我们通过在HAR期间自适应地控制传感器的采样率来提高智能手机的能源效率。我们根据加速度的大小,依据活动变化来收集传感器样本。除此之外,我们使用线性判别分析(LDA)来选择特征以及用于活动分类的机器学习方法。我们的方法在UCI(加利福尼亚大学欧文分校)数据集上得到了验证;并且在使用智能手机进行HAR应用期间,它实现了总体56.39%的节能以及99.58%的识别准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94f8/7218853/22673ae7e122/sensors-20-02189-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验