Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
Viruses. 2020 Apr 14;12(4):442. doi: 10.3390/v12040442.
Interferon (IFN) regulatory factor 3 (IRF3) is the key transcription factor for the induction of IFN and antiviral genes. The absence of antiviral genes in IRF3 deficiency leads to susceptibility to a wide range of viral infections. Previously, we uncovered a function for nontranscriptional IRF3 (nt-IRF3), RLR (RIG-I-like receptor)-induced IRF3-mediated pathway of apoptosis (RIPA), which triggers apoptotic killing of virus-infected cells. Using knock-in mice expressing a transcriptionally inactive, but RIPA-active, IRF3 mutant, we demonstrated the relative contribution of RIPA to host antiviral defense. Given that RIPA is a cellular antiviral pathway, we hypothesized that small molecules that promote RIPA in virus-infected cells would act as antiviral agents. To test this, we conducted a high throughput screen of a library of FDA-approved drugs to identify novel RIPA activators. Our screen identified doxorubicin as a potent RIPA-activating agent. In support of our hypothesis, doxorubicin inhibited the replication of vesicular stomatitis virus, a model rhabdovirus, and its antiviral activity depended on its ability to activate IRF3 in RIPA. Surprisingly, doxorubicin inhibited the transcriptional activity of IRF3. The antiviral activity of doxorubicin was expanded to flavivirus and herpesvirus that also activate IRF3. Mechanistically, doxorubicin promoted RIPA by activating the extracellular signal-regulated kinase (ERK) signaling pathway. Finally, we validated these results using another RIPA-activating compound, pyrvinium pamoate, which showed a similar antiviral effect without affecting the transcriptional activity of IRF3. Therefore, we demonstrate that the RIPA branch of IRF3 can be targeted therapeutically to prevent virus infection.
干扰素 (IFN) 调节因子 3 (IRF3) 是诱导 IFN 和抗病毒基因的关键转录因子。IRF3 缺乏抗病毒基因导致对多种病毒感染的易感性。以前,我们发现了非转录 IRF3 (nt-IRF3) 的功能,即 RLR (RIG-I 样受体) 诱导的 IRF3 介导的细胞凋亡途径 (RIPA),它触发病毒感染细胞的凋亡杀伤。使用表达转录失活但 RIPA 活性的 IRF3 突变体的基因敲入小鼠,我们证明了 RIPA 对宿主抗病毒防御的相对贡献。鉴于 RIPA 是一种细胞抗病毒途径,我们假设在病毒感染细胞中促进 RIPA 的小分子将作为抗病毒剂。为了验证这一点,我们对 FDA 批准的药物文库进行了高通量筛选,以鉴定新的 RIPA 激活剂。我们的筛选发现阿霉素是一种有效的 RIPA 激活剂。支持我们的假设,阿霉素抑制了水疱性口炎病毒(一种模式弹状病毒)的复制,其抗病毒活性取决于其在 RIPA 中激活 IRF3 的能力。令人惊讶的是,阿霉素抑制了 IRF3 的转录活性。阿霉素的抗病毒活性扩展到黄病毒和疱疹病毒,它们也激活 IRF3。在机制上,阿霉素通过激活细胞外信号调节激酶 (ERK) 信号通路来促进 RIPA。最后,我们使用另一种 RIPA 激活化合物吡嗪酰胺验证了这些结果,吡嗪酰胺显示出相似的抗病毒作用,而不影响 IRF3 的转录活性。因此,我们证明可以针对 IRF3 的 RIPA 分支进行治疗性靶向,以预防病毒感染。