Suppr超能文献

化学气相沉积法制备的30°扭曲双层石墨烯准晶体

30°-Twisted Bilayer Graphene Quasicrystals from Chemical Vapor Deposition.

作者信息

Pezzini Sergio, Mišeikis Vaidotas, Piccinini Giulia, Forti Stiven, Pace Simona, Engelke Rebecca, Rossella Francesco, Watanabe Kenji, Taniguchi Takashi, Kim Philip, Coletti Camilla

机构信息

Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy.

Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.

出版信息

Nano Lett. 2020 May 13;20(5):3313-3319. doi: 10.1021/acs.nanolett.0c00172. Epub 2020 Apr 24.

Abstract

The artificial stacking of atomically thin crystals suffers from intrinsic limitations in terms of control and reproducibility of the relative orientation of exfoliated flakes. This drawback is particularly severe when the properties of the system critically depends on the twist angle, as in the case of the dodecagonal quasicrystal formed by two graphene layers rotated by 30°. Here we show that large-area 30°-rotated bilayer graphene can be grown deterministically by chemical vapor deposition on Cu, eliminating the need of artificial assembly. The quasicrystals are easily transferred to arbitrary substrates and integrated in high-quality hexagonal boron nitride-encapsulated heterostructures, which we process into dual-gated devices exhibiting carrier mobility up to 10 cm/(V s). From low-temperature magnetotransport, we find that the graphene quasicrystals effectively behave as uncoupled graphene layers, showing 8-fold degenerate quantum Hall states. This result indicates that the Dirac cones replica detected by previous photoemission experiments do not contribute to the electrical transport.

摘要

原子级薄晶体的人工堆叠在剥落薄片相对取向的控制和可重复性方面存在固有局限性。当系统的性质严重依赖于扭转角时,这一缺点尤为严重,例如由两层旋转30°的石墨烯形成的十二边形准晶体的情况。在这里,我们表明,可以通过在铜上进行化学气相沉积来确定性地生长大面积30°旋转的双层石墨烯,从而无需人工组装。准晶体很容易转移到任意衬底上,并集成到高质量的六方氮化硼封装的异质结构中,我们将其加工成双栅极器件,其载流子迁移率高达10 cm/(V·s)。通过低温磁输运,我们发现石墨烯准晶体有效地表现为未耦合的石墨烯层,显示出8重简并量子霍尔态。这一结果表明,先前光电子能谱实验检测到的狄拉克锥复制品对电输运没有贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验