Suppr超能文献

具有人口周期的年龄结构离散时间疾病模型。

Age structured discrete-time disease models with demographic population cycles.

机构信息

Department of Mathematics and Statistics, University of Victoria, Victoria, Canada.

Department of Mathematics, Howard University, Washington, DC, USA.

出版信息

J Biol Dyn. 2020 Dec;14(1):308-331. doi: 10.1080/17513758.2020.1743885.

Abstract

We use juvenile-adult discrete-time infectious disease models with intrinsically generated demographic population cycles to study the effects of age structure on the persistence or extinction of disease and the basic reproduction number, [Formula: see text]. Our juvenile-adult Susceptible-Infectious-Recovered (SIR) and Infectious-Salmon Anemia-Virus (ISA[Formula: see text] models share a common disease-free system that exhibits equilibrium dynamics for the Beverton-Holt recruitment function. However, when the recruitment function is the Ricker model, a juvenile-adult disease-free system exhibits a range of dynamic behaviours from stable equilibria to deterministic period population cycles to Neimark-Sacker bifurcations and deterministic chaos. For these two models, we use an extension of the next generation matrix approach for calculating [Formula: see text] to account for populations with locally asymptotically stable period cycles in the juvenile-adult disease-free system. When [Formula: see text] and the juvenile-adult demographic system (in the absence of the disease) has a locally asymptotically stable period population cycle, we prove that the juvenile-adult disease goes extinct whenever [Formula: see text]. Under the same period juvenile-adult demographic assumption but with [Formula: see text], we prove that the juvenile-adult disease-free period population cycle is unstable and the disease persists. When [Formula: see text], our simulations show that the juvenile-adult disease-free period cycle dynamics drives the juvenile-adult SIR disease dynamics, but not the juvenile-adult ISA disease dynamics.

摘要

我们使用具有内在产生人口周期的青少年-成人离散时间传染病模型来研究年龄结构对疾病持久性或灭绝以及基本繁殖数[Formula: see text]的影响。我们的青少年-成人易感-感染-恢复(SIR)和感染-鲑鱼贫血病毒(ISA[Formula: see text]模型共享一个共同的无病系统,该系统表现出贝弗顿-霍尔特招募功能的平衡动力学。然而,当招募功能是里克尔模型时,青少年-成人无病系统表现出从稳定平衡到确定性周期种群周期再到奈马克-萨克尔分支和确定性混沌的一系列动态行为。对于这两个模型,我们使用下一代矩阵方法的扩展来计算[Formula: see text],以考虑在青少年-成人无病系统中具有局部渐近稳定周期种群周期的种群。当[Formula: see text]和青少年-成人人口系统(在没有疾病的情况下)具有局部渐近稳定的周期种群周期时,我们证明只要[Formula: see text],青少年-成人疾病就会灭绝。在相同的周期青少年-成人人口假设下,但[Formula: see text],我们证明了青少年-成人无病周期种群周期是不稳定的,疾病会持续存在。当[Formula: see text]时,我们的模拟表明,青少年-成人无病周期循环动力学驱动青少年-成人 SIR 疾病动力学,但不驱动青少年-成人 ISA 疾病动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验