New England Biolabs, Inc., Ipswich, Massachusetts 01938, United States.
ACS Synth Biol. 2020 Jun 19;9(6):1349-1360. doi: 10.1021/acssynbio.0c00038. Epub 2020 May 7.
Genome sequencing and bioinformatics tools have facilitated the identification and expression of an increasing number of cryptic biosynthetic gene clusters (BGCs). However, functional analysis of all components of a metabolic pathway to precisely determine biocatalytic properties remains time-consuming and labor intensive. One way to speed this process involves microscale cell-free protein synthesis (CFPS) for direct gene to biochemical function analysis, which has rarely been applied to study multicomponent enzymatic systems in specialized metabolism. We sought to establish an transcription/translation (TT)-assay to assess assembly of cyanobacterial-derived hapalindole-type natural products (cNPs) because of their diverse bioactivity profiles and complex structural diversity. Using a CFPS system including a plasmid bearing prenyltransferase from UTEX 1903, we showed production of the central prenylated intermediate (3GC) in the presence of exogenous geranyl-pyrophosphate (GPP) and -indole isonitrile. Further addition of a plasmid bearing the Stig cyclase resulted in synthesis of both FamD2 and FamC1 enzymes, which was confirmed by proteomics analysis, and catalyzed assembly of 12--hapalindole U. Further combinations of Stig cyclases (FamC1-C4) produced hapalindole U and hapalindole H, while FisC identified from sp. SAG46.79 generated 12--fischerindole U. The CFPS system was further employed to screen six unnatural halogenated -indole isonitrile substrates using FamC1 and FisC, and the reactions were scaled-up using chemoenzymatic synthesis and identified as 5- and 6-fluoro-12--hapalindole U, and 5- and 6-fluoro-12--fischerindole U, respectively. This approach represents an effective, high throughput strategy to determine the functional role of biosynthetic enzymes from diverse natural product BGCs.
基因组测序和生物信息学工具促进了越来越多的隐性生物合成基因簇(BGCs)的鉴定和表达。然而,要精确确定代谢途径的所有组成部分的生物催化特性,功能分析仍然既耗时又费力。一种加快这一过程的方法是进行微尺度无细胞蛋白合成(CFPS),以便直接进行基因到生化功能分析,这种方法很少应用于专门代谢中的多组分酶系统的研究。我们试图建立一种转录/翻译(TT)测定法来评估来源于蓝细菌的哈帕林多醇型天然产物(cNPs)的组装,因为它们具有多样化的生物活性谱和复杂的结构多样性。使用包括来自 UTEX 1903 的 prenyltransferase 质粒的 CFPS 系统,我们在存在外源香叶基焦磷酸(GPP)和 -吲哚异腈的情况下显示出了中央prenylated 中间体(3GC)的产生。进一步添加带有 stig 环化酶质粒导致了 FamD2 和 FamC1 酶的合成,通过蛋白质组学分析得到了证实,并催化了 12--hapalindole U 的组装。进一步组合 Stig 环化酶(FamC1-C4)生成了 hapalindole U 和 hapalindole H,而从 sp. SAG46.79 鉴定的 FisC 生成了 12--fischerindole U。该 CFPS 系统进一步用于使用 FamC1 和 FisC 筛选六种非天然卤代吲哚异腈底物,并通过化学酶合成进行放大,鉴定为 5-和 6-氟-12--hapalindole U,和 5-和 6-氟-12--fischerindole U。该方法代表了一种有效、高通量的策略,用于确定来自不同天然产物 BGC 的生物合成酶的功能作用。