Suppr超能文献

动物模型对先天性代谢疾病的贡献。

Animal Model Contributions to Congenital Metabolic Disease.

机构信息

Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.

出版信息

Adv Exp Med Biol. 2020;1236:225-244. doi: 10.1007/978-981-15-2389-2_9.

Abstract

Genetic model systems allow researchers to probe and decipher aspects of human disease, and animal models of disease are frequently specifically engineered and have been identified serendipitously as well. Animal models are useful for probing the etiology and pathophysiology of disease and are critical for effective discovery and development of novel therapeutics for rare diseases. Here we review the impact of animal model organism research in three examples of congenital metabolic disorders to highlight distinct advantages of model system research. First, we discuss phenylketonuria research where a wide variety of research fields and models came together to make impressive progress and where a nearly ideal mouse model has been central to therapeutic advancements. Second, we review advancements in Lesch-Nyhan syndrome research to illustrate the role of models that do not perfectly recapitulate human disease as well as the need for multiple models of the same disease to fully investigate human disease aspects. Finally, we highlight research on the GM2 gangliosidoses Tay-Sachs and Sandhoff disease to illustrate the important role of both engineered traditional laboratory animal models and serendipitously identified atypical models in congenital metabolic disorder research. We close with perspectives for the future for animal model research in congenital metabolic disorders.

摘要

遗传模型系统使研究人员能够探究和解析人类疾病的各个方面,疾病的动物模型经常被专门设计,也有偶然发现的。动物模型可用于探究疾病的病因和病理生理学,对于发现和开发罕见疾病的新型疗法至关重要。在这里,我们以三种先天性代谢紊乱的动物模型为例,回顾动物模型生物研究的影响,突出模型系统研究的独特优势。首先,我们讨论苯丙酮尿症研究,其中各种研究领域和模型汇聚在一起取得了令人瞩目的进展,而一个近乎理想的小鼠模型一直是治疗进展的核心。其次,我们回顾 Lesch-Nyhan 综合征研究的进展,说明不完全模拟人类疾病的模型的作用以及研究人类疾病各个方面需要多种相同疾病的模型。最后,我们强调 GM2 神经节苷脂贮积症 Tay-Sachs 和 Sandhoff 疾病的研究,说明传统实验室动物模型和偶然发现的非典型模型在先天性代谢紊乱研究中的重要作用。最后,我们展望先天性代谢紊乱的动物模型研究的未来前景。

相似文献

1
Animal Model Contributions to Congenital Metabolic Disease.
Adv Exp Med Biol. 2020;1236:225-244. doi: 10.1007/978-981-15-2389-2_9.
2
[Molecular pathogenesis and therapeutic approach of GM2 gangliosidosis].
Yakugaku Zasshi. 2013;133(2):269-74. doi: 10.1248/yakushi.12-00199.
4
Natural history study of glycan accumulation in large animal models of GM2 gangliosidoses.
PLoS One. 2020 Dec 1;15(12):e0243006. doi: 10.1371/journal.pone.0243006. eCollection 2020.
6
A novel gene editing system to treat both Tay-Sachs and Sandhoff diseases.
Gene Ther. 2020 May;27(5):226-236. doi: 10.1038/s41434-019-0120-5. Epub 2020 Jan 2.
7
Therapeutic evaluation of GM2 gangliosidoses by ELISA using anti-GM2 ganglioside antibodies.
Clin Chim Acta. 2007 Mar;378(1-2):38-41. doi: 10.1016/j.cca.2006.10.010. Epub 2006 Oct 24.
8
Glycosphingolipid degradation and animal models of GM2-gangliosidoses.
J Inherit Metab Dis. 1998 Aug;21(5):548-63. doi: 10.1023/a:1005419122018.
9
Highly phosphomannosylated enzyme replacement therapy for GM2 gangliosidosis.
Ann Neurol. 2011 Apr;69(4):691-701. doi: 10.1002/ana.22262. Epub 2010 Dec 8.
10
The GM2 gangliosidoses databases: allelic variation at the HEXA, HEXB, and GM2A gene loci.
Genet Med. 2000 Nov-Dec;2(6):319-27. doi: 10.1097/00125817-200011000-00003.

引用本文的文献

1
Do metabolic deficits contribute to sleep disruption in monogenic intellectual disability syndromes?
Trends Neurosci. 2024 Aug;47(8):583-592. doi: 10.1016/j.tins.2024.06.006. Epub 2024 Jul 24.
2
Experimental study of different dehydration methods in the process of preparing frozen brain sections.
Ibrain. 2022 Nov 29;10(2):164-171. doi: 10.1002/ibra.12075. eCollection 2024 Summer.
3
Pet Wellness and Vitamin A: A Narrative Overview.
Animals (Basel). 2024 Mar 25;14(7):1000. doi: 10.3390/ani14071000.
4
Adenylosuccinate lyase deficiency affects neurobehavior via perturbations to tyramine signaling in Caenorhabditis elegans.
PLoS Genet. 2023 Sep 29;19(9):e1010974. doi: 10.1371/journal.pgen.1010974. eCollection 2023 Sep.
5
A Strainer-Based Platform for the Collection and Immunolabeling of Mouse Intestinal Organoids.
Int J Mol Sci. 2023 Sep 1;24(17):13568. doi: 10.3390/ijms241713568.
6
Functional genomics in stem cell models: considerations and applications.
Front Cell Dev Biol. 2023 Jul 24;11:1236553. doi: 10.3389/fcell.2023.1236553. eCollection 2023.
8
Inborn errors of metabolism: Lessons from iPSC models.
Rev Endocr Metab Disord. 2021 Dec;22(4):1189-1200. doi: 10.1007/s11154-021-09671-z. Epub 2021 Jul 9.
9
The rapidly evolving view of lysosomal storage diseases.
EMBO Mol Med. 2021 Feb 5;13(2):e12836. doi: 10.15252/emmm.202012836. Epub 2021 Jan 18.

本文引用的文献

1
Production and Purification of Therapeutic Enzymes.
Adv Exp Med Biol. 2019;1148:1-24. doi: 10.1007/978-981-13-7709-9_1.
3
Case for genome sequencing in infants and children with rare, undiagnosed or genetic diseases.
J Med Genet. 2019 Dec;56(12):783-791. doi: 10.1136/jmedgenet-2019-106111. Epub 2019 Apr 25.
4
Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut.
Cell Host Microbe. 2019 Apr 10;25(4):499-512.e8. doi: 10.1016/j.chom.2019.02.005. Epub 2019 Mar 26.
5
Newborn screening and changing face of inborn errors of metabolism in the United States.
Ann Transl Med. 2018 Dec;6(24):468. doi: 10.21037/atm.2018.11.68.
6
An Introduction to Pharmacotherapy for Inborn Errors of Metabolism.
J Pediatr Pharmacol Ther. 2018 Nov-Dec;23(6):432-446. doi: 10.5863/1551-6776-23.6.432.
8
Inborn Errors of Metabolism: From Preconception to Adulthood.
Am Fam Physician. 2019 Jan 1;99(1):25-32.
9
RNA-Seq analysis in an avian model of maternal phenylketonuria.
Mol Genet Metab. 2019 Jan;126(1):23-29. doi: 10.1016/j.ymgme.2018.09.003. Epub 2018 Sep 6.
10
New Approaches to Tay-Sachs Disease Therapy.
Front Physiol. 2018 Nov 20;9:1663. doi: 10.3389/fphys.2018.01663. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验