Kayvanpour Elham, Gi Weng-Tein, Sedaghat-Hamedani Farbod, Lehmann David H, Frese Karen S, Haas Jan, Tappu Rewati, Samani Omid Shirvani, Nietsch Rouven, Kahraman Mustafa, Fehlmann Tobias, Müller-Hennessen Matthias, Weis Tanja, Giannitsis Evangelos, Niederdränk Torsten, Keller Andreas, Katus Hugo A, Meder Benjamin
Department of Internal Medicine III, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Germany.
Department of Internal Medicine III, Heidelberg University, Heidelberg, Germany.
J Mol Cell Cardiol. 2021 Feb;151:155-162. doi: 10.1016/j.yjmcc.2020.04.014. Epub 2020 Apr 17.
Cardiac troponins are the preferred biomarkers of acute myocardial infarction. Despite superior sensitivity, serial testing of Troponins to identify patients suffering acute coronary syndromes is still required in many cases to overcome limited specificity. Moreover, unstable angina pectoris relies on reported symptoms in the troponin-negative group. In this study, we investigated genome-wide miRNA levels in a prospective cohort of patients with clinically suspected ACS and determined their diagnostic value by applying an in silico neural network.
PAXgene blood and serum samples were drawn and hsTnT was measured in patients at initial presentation to our Chest-Pain Unit. After clinical and diagnostic workup, patients were adjudicated by senior cardiologists in duty to their final diagnosis: STEMI, NSTEMI, unstable angina pectoris and non-ACS patients. ACS patients and a cohort of healthy controls underwent deep transcriptome sequencing. Machine learning was implemented to construct diagnostic miRNA classifiers.
We developed a neural network model which incorporates 34 validated ACS miRNAs, showing excellent classification results. By further developing additional machine learning models and selecting the best miRNAs, we achieved an accuracy of 0.96 (95% CI 0.96-0.97), sensitivity of 0.95, specificity of 0.96 and AUC of 0.99. The one-point hsTnT value reached an accuracy of 0.89, sensitivity of 0.82, specificity of 0.96, and AUC of 0.96.
Here we show the concept of neural network based biomarkers for ACS. This approach also opens the possibility to include multi-modal data points to further increase precision and perform classification of other ACS differential diagnoses.
心肌肌钙蛋白是急性心肌梗死的首选生物标志物。尽管具有更高的敏感性,但在许多情况下仍需要对肌钙蛋白进行系列检测,以识别急性冠状动脉综合征患者,从而克服特异性有限的问题。此外,不稳定型心绞痛依赖于肌钙蛋白阴性组中报告的症状。在本研究中,我们调查了临床疑似急性冠脉综合征(ACS)患者前瞻性队列中的全基因组微小RNA(miRNA)水平,并通过应用计算机神经网络确定了它们的诊断价值。
在患者初次就诊于我们的胸痛单元时采集PAXgene血液和血清样本,并检测高敏肌钙蛋白T(hsTnT)。经过临床和诊断检查后,由值班的资深心脏病专家对患者进行最终诊断判定:ST段抬高型心肌梗死(STEMI)、非ST段抬高型心肌梗死(NSTEMI)、不稳定型心绞痛和非ACS患者。对ACS患者和一组健康对照进行深度转录组测序。实施机器学习以构建诊断性miRNA分类器。
我们开发了一个包含34种经过验证的ACS相关miRNA的神经网络模型,显示出优异的分类结果。通过进一步开发其他机器学习模型并选择最佳miRNA,我们实现了准确率为0.96(95%置信区间0.96 - 0.97),敏感性为0.95,特异性为0.96,曲线下面积(AUC)为0.99。单点hsTnT值的准确率为0.89,敏感性为0.82,特异性为0.96,AUC为0.96。
在此我们展示了基于神经网络的ACS生物标志物概念。这种方法还为纳入多模态数据点以进一步提高精度并对其他ACS鉴别诊断进行分类开辟了可能性。