Suppr超能文献

数字扫描激光片层荧光寿命显微镜与宽场时间门成像。

Digital scanned laser light-sheet fluorescence lifetime microscopy with wide-field time-gated imaging.

机构信息

College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China.

College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China.

出版信息

J Microsc. 2020 Jul;279(1):69-76. doi: 10.1111/jmi.12898. Epub 2020 May 14.

Abstract

We develop a multidimensional fluorescence imaging technique by implementing a wide-field time-gated fluorescence lifetime imaging into digital scanned laser light-sheet microscopy (FLIM-DSLM) to measure 3D fluorescence lifetime distribution in mesoscopic specimens with high resolution. This is achieved by acquiring a series of time-gated images at different relative time delays with respect of excitation pulses at different depths. The lifetime is determined for each voxel by iteratively fitting to single exponential decay. The performance of the developed system is evaluated with the measurements of a lifetime reference Rhodamine 6G solution and a subresolution fluorescent bead phantom. We also demonstrate the application performances of this system to ex vivo and in vivo imaging of Tg(kdrl:EGFP) transgenic zebrafish embryos, illustrating the lifetime differences between the GFP signal and the autofluorescence signal. The results show that FLIM-DSLM can be used for sample size up to a few millimetres and can be utilised as a powerful and robust method for biomedical research, for example as a readout of protein-protein interactions via Förster resonance energy transfer.

摘要

我们通过将宽场时间门控荧光寿命成像应用于数字扫描激光光片显微镜(FLIM-DSLM),开发了一种多维荧光成像技术,以高分辨率测量介观标本中的 3D 荧光寿命分布。这是通过在不同深度的激发脉冲处获取一系列相对于激发脉冲具有不同相对延迟时间的时间门控图像来实现的。通过对单指数衰减进行迭代拟合,为每个体素确定寿命。通过对 Rhodamine 6G 溶液和亚分辨率荧光珠荧光体的寿命参考测量来评估所开发系统的性能。我们还展示了该系统在 Tg(kdrl:EGFP)转基因斑马鱼胚胎的离体和体内成像中的应用性能,说明了 GFP 信号和自发荧光信号之间的寿命差异。结果表明,FLIM-DSLM 可用于几毫米大小的样本,并且可以作为生物医学研究的一种强大而稳健的方法,例如通过Förster 共振能量转移进行蛋白质-蛋白质相互作用的读出。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验