Suppr超能文献

使用两个转录组之间离散度的局部估计对单个受试者的“组学”动态进行解读。

Interpretation of 'Omics dynamics in a single subject using local estimates of dispersion between two transcriptomes.

作者信息

Li Qike, Zaim Samir Rachid, Aberasturi Dillon, Berghout Joanne, Li Haiquan, Vitali Francesca, Kenost Colleen, Zhang Helen Hao, Lussier Yves A

机构信息

Center for Biomedical Informatics and Biostatistics(CB2).

Department of Medicine.

出版信息

AMIA Annu Symp Proc. 2020 Mar 4;2019:582-591. eCollection 2019.

Abstract

Calculating Differentially Expressed Genes (DEGs) from RNA-sequencing requires replicates to estimate gene-wise variability, a requirement that is at times financially or physiologically infeasible in clinics. By imposing restrictive transcriptome-wide assumptions limiting inferential opportunities of conventional methods (edgeR, NOISeq-sim, DESeq, DEGseq), comparing two conditions without replicates (TCWR) has been proposed, but not evaluated. Under TCWR conditions (e.g., unaffected tissue vs. tumor), differences of transformed expression of the proposed individualized DEG (iDEG) method follow a distribution calculated across a local partition of related transcripts at baseline expression; thereafter the probability of each DEG is estimated by empirical Bayes with local false discovery rate control using a two-group mixture model. In extensive simulation studies of TCWR methods, iDEG and NOISeq are more accurate at 5%<DEGs<20% (precision>90%, recall>75%, false_positive_rate<1%) and 30%<DEGs<40% (precision=recall~90%), respectively. The proposed iDEG method borrows localized distribution information from the same individual, a strategy that improves accuracy to compare transcriptomes in absence of replicates at low DEGsconditions. http://www.lussiergroup.org/publications/iDEG.

摘要

从RNA测序中计算差异表达基因(DEG)需要重复样本以估计基因水平的变异性,而这一要求在临床中有时在经济上或生理上是不可行的。通过施加限制全转录组的假设来限制传统方法(edgeR、NOISeq-sim、DESeq、DEGseq)的推断机会,已经提出了在无重复样本的情况下比较两种条件(TCWR)的方法,但尚未进行评估。在TCWR条件下(例如,未受影响的组织与肿瘤),所提出的个体化DEG(iDEG)方法的转化表达差异遵循在基线表达时跨相关转录本的局部划分计算出的分布;此后,通过经验贝叶斯方法,使用两组混合模型控制局部错误发现率,来估计每个DEG的概率。在对TCWR方法的广泛模拟研究中,iDEG和NOISeq分别在5%<DEGs<20%(精度>90%,召回率>75%,假阳性率<1%)和30%<DEGs<40%(精度=召回率~90%)时更准确。所提出的iDEG方法从同一个体借用局部分布信息,这一策略提高了在低DEG条件下无重复样本时比较转录组的准确性。http://www.lussiergroup.org/publications/iDEG

相似文献

引用本文的文献

3
The Architecture of a Precision Oncology Platform.精准肿瘤学平台的架构。
Adv Exp Med Biol. 2022;1361:1-22. doi: 10.1007/978-3-030-91836-1_1.

本文引用的文献

4

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验