Suppr超能文献

使用大型临床数据研究网络的真实世界数据评估患者试验可推广性评分的有效性:一项结直肠癌临床试验案例研究。

Assessing the Validity of a Patient-Trial Generalizability Score using Real-world Data from a Large Clinical Data Research Network: A Colorectal Cancer Clinical Trial Case Study.

作者信息

Li Qian, He Zhe, Guo Yi, Zhang Hansi, George Thomas J, Hogan William, Charness Neil, Bian Jiang

机构信息

University of Florida, Gainesville, FL, USA.

Florida State University, Tallahassee, FL, USA.

出版信息

AMIA Annu Symp Proc. 2020 Mar 4;2019:1101-1110. eCollection 2019.

Abstract

Existing trials had not taken enough consideration of their population representativeness, which can lower the effectiveness when the treatment is applied in real-world clinical practice. We analyzed the eligibility criteria of Bevacizumab colorectal cancer treatment trials, assessed their a priori generalizability, and examined how it affects patient outcomes when applied in real-world clinical settings. To do so, we extracted patient-level data from a large collection of electronic health records (EHRs) from the OneFlorida consortium. We built a zero-inflated negative binomial model using a composite patient-trial generalizability (cPTG) score to predict patients' clinical outcomes (i.e., number of serious adverse events, [SAEs]). Our study results provide a body of evidence that 1) the cPTG scores can predict patient outcomes; and 2) patients who are more similar to the study population in the trials that were used to develop the treatment will have a significantly lower possibility to experience serious adverse events.

摘要

现有试验对其人群代表性的考虑不足,这可能导致该治疗方法在实际临床实践中应用时效果降低。我们分析了贝伐单抗治疗结直肠癌试验的纳入标准,评估了其先验可推广性,并研究了在实际临床环境中应用时它如何影响患者预后。为此,我们从OneFlorida联盟的大量电子健康记录(EHR)中提取了患者层面的数据。我们使用综合患者试验可推广性(cPTG)评分构建了零膨胀负二项式模型,以预测患者的临床结局(即严重不良事件的数量,[SAEs])。我们的研究结果提供了一系列证据,即1)cPTG评分可以预测患者结局;2)在用于开发该治疗方法的试验中,与研究人群更相似的患者发生严重不良事件的可能性将显著降低。

相似文献

引用本文的文献

3
A review of research on eligibility criteria for clinical trials.临床试验入选标准研究述评。
Clin Exp Med. 2023 Oct;23(6):1867-1879. doi: 10.1007/s10238-022-00975-1. Epub 2023 Jan 5.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验