Department of Health Outcomes and Bioinformatics, University of Florida, Gainesville, Florida, USA.
Center for Data Solutions, University of Florida College of Medicine - Jacksonville, Jacksonville, Florida, USA.
J Asthma. 2023 May;60(5):1000-1008. doi: 10.1080/02770903.2022.2119865. Epub 2022 Sep 14.
Asthma is a heterogeneous disease with a range of observable phenotypes. To date, the characterization of asthma phenotypes is mostly limited to allergic versus non-allergic disease. Therefore, the aim of this big data study was to computationally derive asthma subtypes from the OneFlorida Clinical Research Consortium.
We obtained data from 2012-2020 from the OneFlorida Clinical Research Consortium. Longitudinal data for patients greater than two years of age who met inclusion criteria for an asthma exacerbation based on International Classification of Diseases codes. We used matrix factorization to extract information and K-means clustering to derive subtypes. The distributions of demographics, comorbidities, and medications were compared using Chi-square statistics.
A total of 39,807 pediatric patients and 23,883 adult patients met inclusion criteria. We identified five distinct pediatric subtypes and four distinct adult subtypes. Pediatric subtype P1 had the highest proportion of black patients, but the lowest use of inhaled corticosteroids and allergy medications. Subtype P2 had a predominance of patients with gastroesophageal reflux disease, whereas P3 had a predominance of patients with allergic disorders. Adult subtype A2 was the most severe and all patients were on biologic agents. Most of subtype A3 patients were not taking controller medications, whereas most patients (>90%) in subtypes A2 and A4 were taking corticosteroids and allergy medications.
We found five distinct pediatric asthma subtypes and four distinct adult asthma subtypes. Future work should externally validate these subtypes and characterize response to treatment by subtype to better guide clinical treatment of asthma.
哮喘是一种具有多种表型的异质性疾病。迄今为止,哮喘表型的特征主要限于过敏与非过敏疾病。因此,这项大数据研究的目的是从佛罗里达临床研究联盟计算推导出哮喘亚型。
我们从佛罗里达临床研究联盟获得了 2012 年至 2020 年的数据。纳入标准为符合国际疾病分类编码的哮喘加重标准的年龄大于 2 岁的患者的纵向数据。我们使用矩阵分解来提取信息,使用 K 均值聚类来推导亚型。使用卡方检验比较人口统计学、合并症和药物的分布情况。
共有 39807 名儿科患者和 23883 名成年患者符合纳入标准。我们确定了五个不同的儿科亚型和四个不同的成年亚型。儿科亚型 P1 中黑种人患者比例最高,但吸入皮质激素和过敏药物的使用率最低。亚型 P2 中胃食管反流病患者居多,而 P3 中过敏疾病患者居多。成年亚型 A2 最为严重,所有患者均使用生物制剂。亚型 A3 的大多数患者未使用控制器药物,而亚型 A2 和 A4 的大多数患者均使用皮质激素和过敏药物。
我们发现了五个不同的儿科哮喘亚型和四个不同的成年哮喘亚型。未来的工作应通过外部验证这些亚型,并通过亚型特征来描述治疗反应,以更好地指导哮喘的临床治疗。