Suppr超能文献

热定位改善了3D打印聚醚醚酮腰椎椎间融合器的层间粘附力和结构完整性。

Thermal Localization Improves the Interlayer Adhesion and Structural Integrity of 3D printed PEEK Lumbar Spinal Cages.

作者信息

Basgul Cemile, MacDonald Daniel W, Siskey Ryan, Kurtz Steven M

机构信息

Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA.

Exponent, Inc., Philadelphia, PA.

出版信息

Materialia (Oxf). 2020 May;10. doi: 10.1016/j.mtla.2020.100650. Epub 2020 Mar 9.

Abstract

Additive manufacturing (AM) is a potential application for polyetheretherketone (PEEK) spinal interbody fusion cages, which were introduced as an alternative to titanium cages because of their biocompatibility, radiolucency and strength. However, AM of PEEK is challenging due to high melting temperature and thermal gradient. Although fused filament fabrication (FFF) techniques have been shown to 3D print PEEK, layer delamination was identified in PEEK cages printed with a first generation FFF PEEK printer [1]. A standard cage design [2] was 3D printed with a second generation FFF PEEK printer. The effect of changing layer cooling time on FFF cages' mechanical strength was investigated by varying nozzle sizes (0.2 mm and 0.4 mm), print speeds (1500 and 2500 mm/min), and the number of cages printed in a single build (1, 4 and 8). To calculate the porosity percentage, FFF cages were micro-CT scanned prior to destructive testing. Mechanical tests were then conducted on FFF cages according to ASTM F2077 [2]. Although altering the cooling time of a layer was not able to change the failure mechanism of FFF cages, it was able to improve cages' mechanical strength. Printing a single cage per build caused a higher ultimate load than printing multiple cages per build. Regardless of the cage number printed per build, cages printed with bigger nozzle diameter achieved higher ultimate load compared to cages printed with smaller nozzle diameter. Printing with a bigger nozzle diameter resulted in less porosity, which might have an additional affect on the interlayer delamination failure mechanism.

摘要

增材制造(AM)是聚醚醚酮(PEEK)脊柱椎间融合器的一种潜在应用方式,由于其生物相容性、射线可透过性和强度,PEEK脊柱椎间融合器被引入作为钛合金融合器的替代品。然而,由于PEEK的高熔点和热梯度,其增材制造具有挑战性。尽管熔融长丝制造(FFF)技术已被证明可用于3D打印PEEK,但在用第一代FFF PEEK打印机打印的PEEK融合器中发现了层间分层现象[1]。使用第二代FFF PEEK打印机对一种标准融合器设计进行了3D打印。通过改变喷嘴尺寸(0.2毫米和0.4毫米)、打印速度(1500和2500毫米/分钟)以及单次构建中打印的融合器数量(1个、4个和8个),研究了改变层冷却时间对FFF融合器机械强度的影响。为了计算孔隙率百分比,在进行破坏性测试之前,对FFF融合器进行了显微CT扫描。然后根据ASTM F2077[2]对FFF融合器进行了机械测试。尽管改变一层的冷却时间无法改变FFF融合器的失效机制,但能够提高融合器的机械强度。每次构建打印单个融合器比每次构建打印多个融合器产生更高的极限载荷。无论每次构建打印的融合器数量如何,与使用较小喷嘴直径打印的融合器相比,使用较大喷嘴直径打印的融合器实现了更高的极限载荷。使用较大喷嘴直径打印导致孔隙率更低,这可能对层间分层失效机制有额外影响。

相似文献

引用本文的文献

6
[Research progress on three-dimensional printed interbody fusion cage].[三维打印椎间融合器的研究进展]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):1018-1027. doi: 10.7507/1001-5515.202104066.

本文引用的文献

9
Applications of 3D printing in the management of severe spinal conditions.3D打印在严重脊柱疾病管理中的应用。
Proc Inst Mech Eng H. 2017 Jun;231(6):471-486. doi: 10.1177/0954411916667761. Epub 2016 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验