Unger M W
J Bacteriol. 1977 Apr;130(1):11-9. doi: 10.1128/jb.130.1.11-19.1977.
The mesl- mutants of Saccharomyces cerevisiae cease division and accumulate in the G1 interval of the cell cycle when deprived of methionine or shifted from 23 to 36 degrees C in the presence of methionine. Synchronous cell cycle arrest results from a deficiency of charged methionyl-transfer ribonucleic acid (methionyl-tRNAMet) as shown by direct measurement of the in vivo pools of methionine, S-adenosylmethionine, and methionyl-tRNAMet. The deficiency of methionyl-tRNAMet in these cells is the consequence of a lesion in a single gene, mes1. mes1 appears to be the structural gene for the methionyl-tRNA synthetase because some revertants of this mutation exhibited a thermolabile methionyl-tRNA synthetase in vitro. A sufficient hypothesis to explain these and previous results is that the control of cell division by S. cerevisiae in response to nutrient limitation is mediated through aminoacyl-tRNA or subsequent steps in protein biosynthesis.
酿酒酵母的mesl-突变体在缺乏甲硫氨酸或在有甲硫氨酸存在的情况下从23℃转移到36℃时,会停止分裂并在细胞周期的G1期积累。如通过直接测量体内甲硫氨酸、S-腺苷甲硫氨酸和甲硫氨酰-tRNA Met库所示,同步细胞周期停滞是由于甲硫氨酰转移核糖核酸(甲硫氨酰-tRNA Met)缺乏所致。这些细胞中甲硫氨酰-tRNA Met的缺乏是单个基因mes1发生损伤的结果。mes1似乎是甲硫氨酰-tRNA合成酶的结构基因,因为该突变的一些回复突变体在体外表现出热不稳定的甲硫氨酰-tRNA合成酶。一个足以解释这些及先前结果的假说是,酿酒酵母对营养限制作出反应时对细胞分裂的控制是通过氨酰-tRNA或蛋白质生物合成的后续步骤介导的。