Kiefer Christoph, Mayer Axel
Institute of Psychology, RWTH Aachen University.
Multivariate Behav Res. 2021 Jul-Aug;56(4):579-594. doi: 10.1080/00273171.2020.1751027. Epub 2020 Apr 24.
The effectiveness of a treatment on a count outcome can be assessed using a negative binomial regression, where treatment effects are defined as the difference between the expected outcome under treatment and under control. These treatment effects can to date only be estimated if all covariates are manifest (observed) variables. However, some covariates are latent variables that are measured by multiple fallible indicators. In such cases, it is important to control for measurement error of covariates in order to avoid attenuation bias and to get unbiased treatment effect estimates. In this paper, we propose a new approach to compute average and conditional treatment effects in regression models with a logarithmic link function involving multiple latent and manifest covariates. We extend the previously presented moment-based approach in several aspects: Building on a multigroup SEM framework for count variables instead of the generalized linear model, we allow for latent covariates and multiple covariates. We provide an illustrative example to explain the application and estimation in structural equation modeling software.
对于计数结果的治疗效果可以使用负二项回归进行评估,其中治疗效果被定义为治疗组和对照组预期结果之间的差异。到目前为止,只有当所有协变量都是显变量(可观测变量)时,才能估计这些治疗效果。然而,一些协变量是由多个易出错的指标测量的潜在变量。在这种情况下,控制协变量的测量误差以避免衰减偏差并获得无偏的治疗效果估计非常重要。在本文中,我们提出了一种新方法,用于在具有对数链接函数且涉及多个潜在和显协变量的回归模型中计算平均治疗效果和条件治疗效果。我们在几个方面扩展了先前提出的基于矩的方法:基于计数变量的多组结构方程模型框架而非广义线性模型,我们考虑了潜在协变量和多个协变量。我们提供了一个示例来说明在结构方程建模软件中的应用和估计。