Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
J Biol Chem. 2020 Jun 5;295(23):7865-7876. doi: 10.1074/jbc.RA119.010474. Epub 2020 Apr 24.
Mitochondrial dysfunction is implicated in sporadic and familial Parkinson's disease (PD). However, the mechanisms that impair homeostatic responses to mitochondrial dysfunction remain unclear. Previously, we found that chronic, low-dose administration of the mitochondrial complex I inhibitor 1-methyl-4-phenylpyridinium (MPP) dysregulates mitochondrial fission-fusion, mitophagy, and mitochondrial biogenesis. Given that PTEN-induced kinase 1 (PINK1) regulates mitochondrial function, dynamics, and turnover, we hypothesized that alterations in endogenous PINK1 levels contribute to depletion of mitochondria during chronic complex I injury. Here we found that chronic MPP treatment of differentiated SH-SY5Y neuronal cells significantly decreases PINK1 expression prior to reductions in other mitochondrial components. Furthermore, Bcl2-associated athanogene 6 (BAG6, BAT3, or Scythe), a protein involved in protein quality control and degradation, was highly up-regulated during the chronic MPP treatment. BAG6 interacted with PINK1, and BAG6 overexpression decreased the half-life of PINK1. Conversely, siRNA-mediated BAG6 knockdown prevented chronic MPP stress-induced loss of PINK1, reversed MPP-provoked mitochondrial changes, increased cell viability, and prevented MPP-induced dendrite shrinkage in primary neurons. These results indicate that BAG6 up-regulation during chronic complex I inhibition contributes to mitochondrial pathology by decreasing the levels of endogenous PINK1. Given that recessive mutations in PINK1 cause familial PD, the finding of accelerated PINK1 degradation in the chronic MPP model suggests that PINK1 loss of function represents a point of convergence between the neurotoxic and genetic causes of PD.
线粒体功能障碍与散发性和家族性帕金森病(PD)有关。然而,导致线粒体功能障碍的内稳态反应受损的机制仍不清楚。先前,我们发现慢性、低剂量给予线粒体复合物 I 抑制剂 1-甲基-4-苯基吡啶(MPP)会扰乱线粒体裂变-融合、线粒体自噬和线粒体生物发生。鉴于 PTEN 诱导的激酶 1(PINK1)调节线粒体功能、动力学和周转,我们假设内源性 PINK1 水平的改变有助于在慢性复合物 I 损伤期间耗尽线粒体。在这里,我们发现慢性 MPP 处理分化的 SH-SY5Y 神经元细胞会在其他线粒体成分减少之前显著降低 PINK1 的表达。此外,Bcl2 相关的 Athanogene 6(BAG6、BAT3 或 Scythe),一种参与蛋白质质量控制和降解的蛋白质,在慢性 MPP 处理过程中高度上调。BAG6 与 PINK1 相互作用,BAG6 的过表达会降低 PINK1 的半衰期。相反,siRNA 介导的 BAG6 敲低可防止慢性 MPP 应激诱导的 PINK1 丢失,逆转 MPP 引起的线粒体变化,增加细胞活力,并防止 MPP 诱导的原代神经元树突收缩。这些结果表明,BAG6 在慢性复合物 I 抑制期间的上调通过降低内源性 PINK1 的水平导致线粒体病理学。鉴于 PINK1 的隐性突变导致家族性 PD,在慢性 MPP 模型中发现 PINK1 降解加速表明 PINK1 功能丧失代表 PD 的神经毒性和遗传原因的交汇点。