School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA.
Department of Microbiology, Temple University Medical School, Philadelphia, PA 19140, USA.
Eur J Pharm Biopharm. 2020 Jun;151:189-198. doi: 10.1016/j.ejpb.2020.04.010. Epub 2020 Apr 23.
Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent pathogen causing osteomyelitis. The tendency of MRSA to evade standard antibiotic treatment by hiding inside bone cells and biofilms is a major cause of frequent osteomyelitis recurrence. In this study, we developed a lipid-polymer hybrid nanoparticle loading the antibiotic linezolid (LIN-LPN), and focused on evaluating if this new nanoantibiotic can achieve significant in vitro activities against these intracellular and biofilm-embedded MRSA. The optimal LIN-LPN formulation demonstrated both high linezolid payload (12.0% by weight of nanoparticles) and controlled release characteristics (gradually released the entrapped antibiotic in 120 h). Although it achieved lower activities against bacteria including USA300-0114, CDC-587, RP-62A in planktonic form, it was substantially superior against the intracellular MRSA reservoir inside osteoblast cells. The differences of intracellular activities between LIN-LPN and linezolid were 87.0-fold, 12.3-fold, and 12.6-fold in CFU/ml (p < 0.05 or < 0.01) at 2 µg/ml, 4 µg/ml, and 8 µg/ml linezolid concentrations, respectively. LIN-LPN also suppressed the MRSA biofilm growth to 35-60% of the values achieved with free linezolid (p < 0.05). These enhanced intracellular and anti-biofilm activities of LIN-LPN were likely contributed by the extensive accumulation of LIN-LPN inside the MRSA-infected osteoblasts and biofilms as revealed in the confocal microscope images. The study thus validates the feasibility of exploiting the good nanoparticle-host cell and nanoparticle-biofilm interactions for improving the antibiotic drug activities against the poorly accessible bacteria, and supports LIN-LPN as a new alternative therapy for preventing the recurrence of MRSA-mediated bone infections.
耐甲氧西林金黄色葡萄球菌(MRSA)是引起骨髓炎最常见的病原体。MRSA 逃避标准抗生素治疗的倾向,通过隐藏在骨细胞和生物膜内,是骨髓炎频繁复发的主要原因。在这项研究中,我们开发了一种载有抗生素利奈唑胺(LIN-LPN)的脂质-聚合物杂化纳米粒子,并专注于评估这种新型纳米抗生素是否能对这些细胞内和生物膜内嵌入的 MRSA 产生显著的体外活性。最佳的 LIN-LPN 制剂表现出高载药量(纳米粒子重量的 12.0%)和控释特性(在 120 小时内逐渐释放包封的抗生素)。尽管它对浮游形式的 USA300-0114、CDC-587、RP-62A 等细菌的活性较低,但对成骨细胞内的细胞内 MRSA 库的活性要高得多。在 2µg/ml、4µg/ml 和 8µg/ml 的利奈唑胺浓度下,LIN-LPN 与利奈唑胺相比,细胞内活性的差异分别为 CFU/ml 的 87.0 倍、12.3 倍和 12.6 倍(p<0.05 或<0.01)。LIN-LPN 还将 MRSA 生物膜的生长抑制到游离利奈唑胺达到的数值的 35-60%(p<0.05)。LIN-LPN 的这些增强的细胞内和抗生物膜活性可能是由于 LIN-LPN 在感染 MRSA 的成骨细胞和生物膜内的广泛积累所致,这在共聚焦显微镜图像中得到了揭示。因此,这项研究验证了利用良好的纳米颗粒-宿主细胞和纳米颗粒-生物膜相互作用来提高抗生素药物对难以接触的细菌的活性的可行性,并支持 LIN-LPN 作为一种新的替代疗法,用于预防 MRSA 介导的骨感染的复发。