Suppr超能文献

去细胞神经基质水凝胶和神经胶质衍生神经营养因子修饰辅助去细胞神经基质支架进行神经修复。

Decellularized nerve matrix hydrogel and glial-derived neurotrophic factor modifications assisted nerve repair with decellularized nerve matrix scaffolds.

机构信息

Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China.

出版信息

J Tissue Eng Regen Med. 2020 Jul;14(7):931-943. doi: 10.1002/term.3050. Epub 2020 May 30.

Abstract

Nerve defects are challenging to address clinically without satisfactory treatments. As a reliable alternative to autografts, decellularized nerve matrix scaffolds (DNM-S) have been widely used in clinics for surgical nerve repair. However, DNM-S remain inferior to autografts in their ability to support nerve regeneration for long nerve defects. In this study, we systematically and clearly presented the nano-architecture of nerve-specific structures, including the endoneurium, basement membrane and perineurium/epineurium in DNM-S. Furthermore, we modified the DNM-S by supplementing decellularized nerve matrix hydrogel (DNMG) and glial-derived neurotrophic factor (GDNF) and then bridged a 50-mm sciatic nerve defect in a beagle model. Fifteen beagles were randomly divided into three groups (five per group): an autograft group, DNM-S group and GDNF-DNMG-modified DNM-S (DNM-S/GDNF@DNMG) group. DNM-S/GDNF@DNMG, as optimized nerve grafts, were used to bridge nerve defects in the same manner as in the DNM-S group. The repair outcome was evaluated by behavioural observations, electrophysiological assessments, regenerated nerve tissue histology and reinnervated target muscle examinations. Compared with the DNM-S group, limb function, electrophysiological responses and histological findings were improved in the DNM-S/GDNF@DNMG group 6 months after grafting, reflecting a narrower gap between the effects of DNM-S and autografts. In conclusion, modification of DNM-S with DNMG and GDNF enhanced nerve regeneration and functional recovery, indicating that noncellular modification of DNM-S is a promising method for treating long nerve defects.

摘要

神经缺损在临床上难以治疗,尚无令人满意的治疗方法。脱细胞神经基质支架(DNM-S)作为自体移植物的可靠替代品,已广泛应用于临床外科神经修复。然而,DNM-S 在支持长神经缺损的神经再生能力方面仍不如自体移植物。在这项研究中,我们系统而清晰地展示了 DNM-S 中神经特异性结构的纳米结构,包括神经内膜、基底膜和神经周膜/神经外膜。此外,我们通过补充脱细胞神经基质水凝胶(DNMG)和胶质源性神经营养因子(GDNF)来修饰 DNM-S,然后在比格犬模型中桥接 50mm 坐骨神经缺损。15 只比格犬随机分为三组(每组 5 只):自体移植物组、DNM-S 组和 GDNF-DNMG 修饰的 DNM-S(DNM-S/GDNF@DNMG)组。DNM-S/GDNF@DNMG 作为优化的神经移植物,以与 DNM-S 组相同的方式桥接神经缺损。通过行为观察、电生理评估、再生神经组织组织学和再支配靶肌肉检查来评估修复结果。与 DNM-S 组相比,DNM-S/GDNF@DNMG 组在移植后 6 个月时肢体功能、电生理反应和组织学发现得到改善,反映了 DNM-S 与自体移植物效果之间的差距缩小。总之,用 DNMG 和 GDNF 修饰 DNM-S 增强了神经再生和功能恢复,表明非细胞修饰 DNM-S 是治疗长神经缺损的一种有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验