Suppr超能文献

CO-RADS:一种用于疑似 COVID-19 患者的 CT 分类评估方案——定义和评估。

CO-RADS: A Categorical CT Assessment Scheme for Patients Suspected of Having COVID-19-Definition and Evaluation.

机构信息

From the Department of Radiology, Nuclear Medicine and Anatomy Radboudumc, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands (M.P., W.v.E., B.G., B.v.G., M.B.); Department of Radiology and Nuclear Medicine, Haaglanden Medical Center, The Hague, the Netherlands (T.v.R.V., H.Q.v.U.); Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands (L.S.); Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands (L.B.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, the Netherlands (H.G.); GROW School of Oncology and Developmental Biology, Maastricht, the Netherlands (H.G.); Department of Radiology, Zuyderland MC, Heerlen, the Netherlands (J.K.); and Department of Radiology, Meander Medical Center, Amersfoort, the Netherlands (C.S.). Members of the COVID-19 Standardized Reporting Working Group of the Dutch Radiological Society are listed in Appendix E4 (online).

出版信息

Radiology. 2020 Aug;296(2):E97-E104. doi: 10.1148/radiol.2020201473. Epub 2020 Apr 27.

Abstract

Background A categorical CT assessment scheme for suspicion of pulmonary involvement of coronavirus disease 2019 (COVID-19 provides a basis for gathering scientific evidence and improved communication with referring physicians. Purpose To introduce the COVID-19 Reporting and Data System (CO-RADS) for use in the standardized assessment of pulmonary involvement of COVID-19 on unenhanced chest CT images and to report its initial interobserver agreement and performance. Materials and Methods The Dutch Radiological Society developed CO-RADS based on other efforts for standardization, such as the Lung Imaging Reporting and Data System or Breast Imaging Reporting and Data System. CO-RADS assesses the suspicion for pulmonary involvement of COVID-19 on a scale from 1 (very low) to 5 (very high). The system is meant to be used in patients with moderate to severe symptoms of COVID-19. The system was evaluated by using 105 chest CT scans of patients admitted to the hospital with clinical suspicion of COVID-19 and in whom reverse transcription-polymerase chain reaction (RT-PCR) was performed (mean, 62 years ± 16 [standard deviation]; 61 men, 53 with positive RT-PCR results). Eight observers used CO-RADS to assess the scans. Fleiss κ value was calculated, and scores of individual observers were compared with the median of the remaining seven observers. The resulting area under the receiver operating characteristics curve (AUC) was compared with results from RT-PCR and clinical diagnosis of COVID-19. Results There was absolute agreement among observers in 573 (68.2%) of 840 observations. Fleiss κ value was 0.47 (95% confidence interval [CI]: 0.45, 0.47), with the highest κ value for CO-RADS categories 1 (0.58, 95% CI: 0.54, 0.62) and 5 (0.68, 95% CI: 0.65, 0.72). The average AUC was 0.91 (95% CI: 0.85, 0.97) for predicting RT-PCR outcome and 0.95 (95% CI: 0.91, 0.99) for clinical diagnosis. The false-negative rate for CO-RADS 1 was nine of 161 cases (5.6%; 95% CI: 1.0%, 10%), and the false-positive rate for CO-RADS category 5 was one of 286 (0.3%; 95% CI: 0%, 1.0%). Conclusion The coronavirus disease 2019 (COVID-19) Reporting and Data System (CO-RADS) is a categorical assessment scheme for pulmonary involvement of COVID-19 at unenhanced chest CT that performs very well in predicting COVID-19 in patients with moderate to severe symptoms and has substantial interobserver agreement, especially for categories 1 and 5. © RSNA, 2020

摘要

背景 对 2019 年冠状病毒病(COVID-19)肺部受累的分类 CT 评估方案为收集科学证据和改善与转诊医生的沟通提供了基础。目的 介绍 COVID-19 报告和数据系统(CO-RADS),用于对胸部 CT 平扫图像上 COVID-19 的肺部受累进行标准化评估,并报告其初始观察者间一致性和性能。材料与方法 荷兰放射学会基于其他标准化工作,如肺部成像报告和数据系统或乳腺成像报告和数据系统,制定了 CO-RADS。CO-RADS 根据从 1(极低)到 5(极高)的评分评估 COVID-19 肺部受累的可能性。该系统用于有中度至重度 COVID-19 症状的患者。对 105 例因临床疑似 COVID-19 而住院且进行逆转录-聚合酶链反应(RT-PCR)检测的患者的胸部 CT 扫描进行了系统评估(平均年龄,62 岁±16[标准差];61 名男性,53 名 RT-PCR 结果阳性)。8 名观察者使用 CO-RADS 对扫描进行评估。计算了 Fleiss κ 值,并将各观察者的评分与其余 7 名观察者的中位数进行了比较。与 RT-PCR 结果和 COVID-19 的临床诊断进行比较,得到的受试者工作特征曲线下面积(AUC)。结果 在 840 次观察中,有 573 次(68.2%)观察者之间存在完全一致。Fleiss κ 值为 0.47(95%置信区间:0.45,0.47),CO-RADS 类别 1(0.58,95%置信区间:0.54,0.62)和 5(0.68,95%置信区间:0.65,0.72)的 κ 值最高。预测 RT-PCR 结果的平均 AUC 为 0.91(95%置信区间:0.85,0.97),预测临床诊断的 AUC 为 0.95(95%置信区间:0.91,0.99)。CO-RADS 类别 1 的假阴性率为 161 例中的 9 例(5.6%;95%置信区间:1.0%,10%),CO-RADS 类别 5 的假阳性率为 286 例中的 1 例(0.3%;95%置信区间:0%,1.0%)。结论 COVID-19 报告和数据系统(CO-RADS)是一种用于胸部 CT 平扫评估 COVID-19 肺部受累的分类评估方案,在预测中度至重度症状患者的 COVID-19 方面表现非常出色,且观察者间一致性高,尤其是类别 1 和 5。 ©2020 RSNA

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b5c/7233402/8b163f2dcb29/radiol.2020201473.fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验