Gupta Kapuganti Jagadis, Kolbert Zsuzsanna, Durner Jorg, Lindermayr Christian, Corpas Francisco J, Brouquisse Renaud, Barroso Juan B, Umbreen Saima, Palma José M, Hancock John T, Petrivalsky Marek, Wendehenne David, Loake Gary J
National Institute of Plant Genome Research Aruna Asaf Ali Mar, 110067, New Delhi, India.
Department of Plant Biology, University of Szeged, Szeged, 6726, Hungary.
New Phytol. 2020 Sep;227(5):1319-1325. doi: 10.1111/nph.16622. Epub 2020 May 23.
Nitric oxide (NO) is perfectly suited for the role of a redox signalling molecule. A key route for NO bioactivity occurs via protein S-nitrosation, and involves the addition of a NO moiety to a protein cysteine (Cys) thiol (-SH) to form an S-nitrosothiol (SNO). This process is thought to underpin a myriad of cellular processes in plants that are linked to development, environmental responses and immune function. Here we collate emerging evidence showing that NO bioactivity regulates a growing number of diverse post-translational modifications including SUMOylation, phosphorylation, persulfidation and acetylation. We provide examples of how NO orchestrates these processes to mediate plant adaptation to a variety of cellular cues.
一氧化氮(NO)非常适合作为氧化还原信号分子发挥作用。NO生物活性的一个关键途径是通过蛋白质S-亚硝基化发生,包括将一个NO部分添加到蛋白质半胱氨酸(Cys)硫醇(-SH)上,形成S-亚硝基硫醇(SNO)。这个过程被认为是植物中众多与发育、环境反应和免疫功能相关的细胞过程的基础。在这里,我们整理了新出现的证据,表明NO生物活性调节越来越多不同的翻译后修饰,包括SUMO化、磷酸化、过硫化和乙酰化。我们提供了一些例子,说明NO如何协调这些过程来介导植物对各种细胞信号的适应。