School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
Physiol Plant. 2010 Apr;138(4):360-71. doi: 10.1111/j.1399-3054.2009.01307.x. Epub 2009 Oct 15.
Reactive oxygen intermediates (ROIs) and reactive nitrogen intermediates (RNIs) have now become well established as important signalling molecules in physiological settings within microorganisms, mammals and plants. These intermediates are routinely synthesised in a highly controlled and transient fashion by NADPH-dependent enzymes, which constitute key regulators of redox signalling. Mild oxidants such as hydrogen peroxide (H(2)O(2)) and especially nitric oxide (NO) signal through chemical reactions with specific atoms of target proteins that result in covalent protein modifications. Specifically, highly reactive cysteine (Cys) residues of low pK(a) are a major site of action for these intermediates. The oxidation of target Cys residues can result in a number of distinct redox-based, post-translational modifications including S-nitrosylation, S-glutathionylation; and sulphenic acid, sulphinic acid and disulphide formation. Importantly, such modifications precisely regulate protein structure and function. Cys-based redox switches are now increasingly being found to underpin many different signalling systems and regulate physiological outputs across kingdoms.
活性氧中间体 (ROIs) 和活性氮中间体 (RNIs) 现已成为微生物、哺乳动物和植物生理环境中重要的信号分子。这些中间体能被 NADPH 依赖性酶以高度受控和短暂的方式常规合成,这些酶是氧化还原信号的关键调节剂。温和氧化剂,如过氧化氢 (H(2)O(2)) ,特别是一氧化氮 (NO) 通过与靶蛋白特定原子的化学反应来传递信号,导致蛋白质的共价修饰。具体来说,低 pK(a) 的高反应性半胱氨酸 (Cys) 残基是这些中间产物的主要作用部位。靶 Cys 残基的氧化可导致多种不同的基于氧化还原的翻译后修饰,包括 S-亚硝基化、S-谷胱甘肽化;和亚磺酸、亚磺酸和二硫化物的形成。重要的是,这种修饰精确地调节蛋白质结构和功能。基于 Cys 的氧化还原开关现在越来越多地被发现是许多不同信号系统的基础,并调节跨界的生理输出。