Suppr超能文献

PlethAugment:基于 GAN 的 PPG 增强在低资源环境下的医疗诊断应用

PlethAugment: GAN-Based PPG Augmentation for Medical Diagnosis in Low-Resource Settings.

出版信息

IEEE J Biomed Health Inform. 2020 Nov;24(11):3226-3235. doi: 10.1109/JBHI.2020.2979608. Epub 2020 Nov 4.

Abstract

The paucity of physiological time-series data collected from low-resource clinical settings limits the capabilities of modern machine learning algorithms in achieving high performance. Such performance is further hindered by class imbalance; datasets where a diagnosis is much more common than others. To overcome these two issues at low-cost while preserving privacy, data augmentation methods can be employed. In the time domain, the traditional method of time-warping could alter the underlying data distribution with detrimental consequences. This is prominent when dealing with physiological conditions that influence the frequency components of data. In this paper, we propose PlethAugment; three different conditional generative adversarial networks (CGANs) with an adapted diversity term for the generation of pathological photoplethysmogram (PPG) signals in order to boost medical classification performance. To evaluate and compare the GANs, we introduce a novel metric-agnostic method; the synthetic generalization curve. We validate this approach on two proprietary and two public datasets representing a diverse set of medical conditions. Compared to training on non-augmented class-balanced datasets, training on augmented datasets leads to an improvement of the AUROC by up to 29% when using cross validation. This illustrates the potential of the proposed CGANs to significantly improve classification performance.

摘要

从资源匮乏的临床环境中收集到的生理时间序列数据稀缺,这限制了现代机器学习算法在实现高性能方面的能力。这种性能进一步受到类不平衡的阻碍;即诊断比其他情况更为常见的数据集。为了在保留隐私的同时以低成本克服这两个问题,可以采用数据增强方法。在时域中,传统的时移方法可能会改变潜在的数据分布,从而产生不利的后果。在处理影响数据频率成分的生理条件时,这一点尤为明显。在本文中,我们提出了 PlethAugment;三个具有适应性多样性项的条件生成对抗网络 (CGAN),用于生成病理性光电容积脉搏波 (PPG) 信号,以提高医学分类性能。为了评估和比较 GANs,我们引入了一种新的无度量方法——合成泛化曲线。我们在两个专有的和两个公共数据集上验证了这种方法,这些数据集代表了不同的医疗条件。与在非增强的类平衡数据集上进行训练相比,在增强数据集上进行训练可以将交叉验证时的 AUROC 提高高达 29%。这说明了所提出的 CGAN 有潜力显著提高分类性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验