Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.
Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
Sensors (Basel). 2023 Sep 6;23(18):7705. doi: 10.3390/s23187705.
Tetanus is a life-threatening bacterial infection that is often prevalent in low- and middle-income countries (LMIC), Vietnam included. Tetanus affects the nervous system, leading to muscle stiffness and spasms. Moreover, severe tetanus is associated with autonomic nervous system (ANS) dysfunction. To ensure early detection and effective management of ANS dysfunction, patients require continuous monitoring of vital signs using bedside monitors. Wearable electrocardiogram (ECG) sensors offer a more cost-effective and user-friendly alternative to bedside monitors. Machine learning-based ECG analysis can be a valuable resource for classifying tetanus severity; however, using existing ECG signal analysis is excessively time-consuming. Due to the fixed-sized kernel filters used in traditional convolutional neural networks (CNNs), they are limited in their ability to capture global context information. In this work, we propose a 2D-WinSpatt-Net, which is a novel Vision Transformer that contains both local spatial window self-attention and global spatial self-attention mechanisms. The 2D-WinSpatt-Net boosts the classification of tetanus severity in intensive-care settings for LMIC using wearable ECG sensors. The time series imaging-continuous wavelet transforms-is transformed from a one-dimensional ECG signal and input to the proposed 2D-WinSpatt-Net. In the classification of tetanus severity levels, 2D-WinSpatt-Net surpasses state-of-the-art methods in terms of performance and accuracy. It achieves remarkable results with an F1 score of 0.88 ± 0.00, precision of 0.92 ± 0.02, recall of 0.85 ± 0.01, specificity of 0.96 ± 0.01, accuracy of 0.93 ± 0.02 and AUC of 0.90 ± 0.00.
破伤风是一种危及生命的细菌感染,在包括越南在内的低收入和中等收入国家(LMIC)很常见。破伤风会影响神经系统,导致肌肉僵硬和痉挛。此外,严重的破伤风与自主神经系统(ANS)功能障碍有关。为了确保早期发现和有效管理 ANS 功能障碍,患者需要使用床边监测器持续监测生命体征。可穿戴心电图(ECG)传感器提供了一种比床边监测器更具成本效益和用户友好的替代方案。基于机器学习的 ECG 分析可以成为分类破伤风严重程度的有价值资源;然而,使用现有的 ECG 信号分析过于耗时。由于传统卷积神经网络(CNN)中使用的固定大小核滤波器,它们在捕获全局上下文信息方面的能力有限。在这项工作中,我们提出了 2D-WinSpatt-Net,这是一种新颖的 Vision Transformer,包含局部空间窗口自注意力和全局空间自注意力机制。2D-WinSpatt-Net 利用可穿戴 ECG 传感器提高了对 LMIC 重症监护环境中破伤风严重程度的分类能力。时间序列成像-连续小波变换-从一维 ECG 信号转换并输入到所提出的 2D-WinSpatt-Net。在破伤风严重程度水平的分类中,2D-WinSpatt-Net 在性能和准确性方面优于最先进的方法。它的 F1 得分为 0.88 ± 0.00,精度为 0.92 ± 0.02,召回率为 0.85 ± 0.01,特异性为 0.96 ± 0.01,准确性为 0.93 ± 0.02,AUC 为 0.90 ± 0.00,取得了显著的结果。