Suppr超能文献

2D-WinSpatt-Net:一种双空间自注意视觉转换器,可提升中低收入国家佩戴心电图传感器的破伤风患者严重程度分类

2D-WinSpatt-Net: A Dual Spatial Self-Attention Vision Transformer Boosts Classification of Tetanus Severity for Patients Wearing ECG Sensors in Low- and Middle-Income Countries.

机构信息

Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.

Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.

出版信息

Sensors (Basel). 2023 Sep 6;23(18):7705. doi: 10.3390/s23187705.

Abstract

Tetanus is a life-threatening bacterial infection that is often prevalent in low- and middle-income countries (LMIC), Vietnam included. Tetanus affects the nervous system, leading to muscle stiffness and spasms. Moreover, severe tetanus is associated with autonomic nervous system (ANS) dysfunction. To ensure early detection and effective management of ANS dysfunction, patients require continuous monitoring of vital signs using bedside monitors. Wearable electrocardiogram (ECG) sensors offer a more cost-effective and user-friendly alternative to bedside monitors. Machine learning-based ECG analysis can be a valuable resource for classifying tetanus severity; however, using existing ECG signal analysis is excessively time-consuming. Due to the fixed-sized kernel filters used in traditional convolutional neural networks (CNNs), they are limited in their ability to capture global context information. In this work, we propose a 2D-WinSpatt-Net, which is a novel Vision Transformer that contains both local spatial window self-attention and global spatial self-attention mechanisms. The 2D-WinSpatt-Net boosts the classification of tetanus severity in intensive-care settings for LMIC using wearable ECG sensors. The time series imaging-continuous wavelet transforms-is transformed from a one-dimensional ECG signal and input to the proposed 2D-WinSpatt-Net. In the classification of tetanus severity levels, 2D-WinSpatt-Net surpasses state-of-the-art methods in terms of performance and accuracy. It achieves remarkable results with an F1 score of 0.88 ± 0.00, precision of 0.92 ± 0.02, recall of 0.85 ± 0.01, specificity of 0.96 ± 0.01, accuracy of 0.93 ± 0.02 and AUC of 0.90 ± 0.00.

摘要

破伤风是一种危及生命的细菌感染,在包括越南在内的低收入和中等收入国家(LMIC)很常见。破伤风会影响神经系统,导致肌肉僵硬和痉挛。此外,严重的破伤风与自主神经系统(ANS)功能障碍有关。为了确保早期发现和有效管理 ANS 功能障碍,患者需要使用床边监测器持续监测生命体征。可穿戴心电图(ECG)传感器提供了一种比床边监测器更具成本效益和用户友好的替代方案。基于机器学习的 ECG 分析可以成为分类破伤风严重程度的有价值资源;然而,使用现有的 ECG 信号分析过于耗时。由于传统卷积神经网络(CNN)中使用的固定大小核滤波器,它们在捕获全局上下文信息方面的能力有限。在这项工作中,我们提出了 2D-WinSpatt-Net,这是一种新颖的 Vision Transformer,包含局部空间窗口自注意力和全局空间自注意力机制。2D-WinSpatt-Net 利用可穿戴 ECG 传感器提高了对 LMIC 重症监护环境中破伤风严重程度的分类能力。时间序列成像-连续小波变换-从一维 ECG 信号转换并输入到所提出的 2D-WinSpatt-Net。在破伤风严重程度水平的分类中,2D-WinSpatt-Net 在性能和准确性方面优于最先进的方法。它的 F1 得分为 0.88 ± 0.00,精度为 0.92 ± 0.02,召回率为 0.85 ± 0.01,特异性为 0.96 ± 0.01,准确性为 0.93 ± 0.02,AUC 为 0.90 ± 0.00,取得了显著的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8ce/10535235/693724dce007/sensors-23-07705-g001.jpg

相似文献

2
Improving Classification of Tetanus Severity for Patients in Low-Middle Income Countries Wearing ECG Sensors by Using a CNN-Transformer Network.
IEEE Trans Biomed Eng. 2023 Apr;70(4):1340-1350. doi: 10.1109/TBME.2022.3216383. Epub 2023 Mar 21.
4
DAMS-Net: Dual attention and multi-scale information fusion network for 12-lead ECG classification.
Methods. 2023 Dec;220:134-141. doi: 10.1016/j.ymeth.2023.10.013. Epub 2023 Nov 14.
5
Enhancing ECG classification with continuous wavelet transform and multi-branch transformer.
Heliyon. 2024 Feb 21;10(5):e26147. doi: 10.1016/j.heliyon.2024.e26147. eCollection 2024 Mar 15.
7
Sepsis Mortality Prediction Using Wearable Monitoring in Low-Middle Income Countries.
Sensors (Basel). 2022 May 19;22(10):3866. doi: 10.3390/s22103866.
8
Global ECG Classification by Self-Operational Neural Networks With Feature Injection.
IEEE Trans Biomed Eng. 2023 Jan;70(1):205-215. doi: 10.1109/TBME.2022.3187874. Epub 2022 Dec 26.
9
An Arrhythmia Classification Model Based on Vision Transformer with Deformable Attention.
Micromachines (Basel). 2023 May 30;14(6):1155. doi: 10.3390/mi14061155.
10

引用本文的文献

1
Continuous patient state attention model for addressing irregularity in electronic health records.
BMC Med Inform Decis Mak. 2024 May 3;24(1):117. doi: 10.1186/s12911-024-02514-2.
2
Non-Invasive Biosensing for Healthcare Using Artificial Intelligence: A Semi-Systematic Review.
Biosensors (Basel). 2024 Apr 9;14(4):183. doi: 10.3390/bios14040183.

本文引用的文献

1
Improving Classification of Tetanus Severity for Patients in Low-Middle Income Countries Wearing ECG Sensors by Using a CNN-Transformer Network.
IEEE Trans Biomed Eng. 2023 Apr;70(4):1340-1350. doi: 10.1109/TBME.2022.3216383. Epub 2023 Mar 21.
3
Direct Medical Costs of Tetanus, Dengue, and Sepsis Patients in an Intensive Care Unit in Vietnam.
Front Public Health. 2022 Jun 20;10:893200. doi: 10.3389/fpubh.2022.893200. eCollection 2022.
4
Sepsis Mortality Prediction Using Wearable Monitoring in Low-Middle Income Countries.
Sensors (Basel). 2022 May 19;22(10):3866. doi: 10.3390/s22103866.
5
Visual-Assisted Probe Movement Guidance for Obstetric Ultrasound Scanning using Landmark Retrieval.
Med Image Comput Comput Assist Interv. 2021 Sep 21;12908:670-679. doi: 10.1007/978-3-030-87237-3_64.
6
A Survey on Vision Transformer.
IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):87-110. doi: 10.1109/TPAMI.2022.3152247. Epub 2022 Dec 5.
7
A CNN-transformer hybrid approach for decoding visual neural activity into text.
Comput Methods Programs Biomed. 2022 Feb;214:106586. doi: 10.1016/j.cmpb.2021.106586. Epub 2021 Dec 14.
8
FAT-Net: Feature adaptive transformers for automated skin lesion segmentation.
Med Image Anal. 2022 Feb;76:102327. doi: 10.1016/j.media.2021.102327. Epub 2021 Dec 4.
9
ECG quality assessment based on hand-crafted statistics and deep-learned S-transform spectrogram features.
Comput Methods Programs Biomed. 2021 Sep;208:106269. doi: 10.1016/j.cmpb.2021.106269. Epub 2021 Jul 13.
10
AFibNet: an implementation of atrial fibrillation detection with convolutional neural network.
BMC Med Inform Decis Mak. 2021 Jul 14;21(1):216. doi: 10.1186/s12911-021-01571-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验