National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
Genome Biol. 2020 Apr 28;21(1):99. doi: 10.1186/s13059-020-02007-1.
Influenza is a severe respiratory illness that continually threatens global health. It has been widely known that gut microbiota modulates the host response to protect against influenza infection, but mechanistic details remain largely unknown. Here, we took advantage of the phenomenon of lethal dose 50 (LD) and metagenomic sequencing analysis to identify specific anti-influenza gut microbes and analyze the underlying mechanism.
Transferring fecal microbes from mice that survive virulent influenza H7N9 infection into antibiotic-treated mice confers resistance to infection. Some gut microbes exhibit differential features to lethal influenza infection depending on the infection outcome. Bifidobacterium pseudolongum and Bifidobacterium animalis levels are significantly elevated in surviving mice when compared to dead or mock-infected mice. Oral administration of B. animalis alone or the combination of both significantly reduces the severity of H7N9 infection in both antibiotic-treated and germ-free mice. Functional metagenomic analysis suggests that B. animalis mediates the anti-influenza effect via several specific metabolic molecules. In vivo tests confirm valine and coenzyme A produce an anti-influenza effect.
These findings show that the severity of influenza infection is closely related to the heterogeneous responses of the gut microbiota. We demonstrate the anti-influenza effect of B. animalis, and also find that the gut population of endogenous B. animalis can expand to enhance host influenza resistance when lethal influenza infection occurs, representing a novel interaction between host and gut microbiota. Further, our data suggest the potential utility of Bifidobacterium in the prevention and as a prognostic predictor of influenza.
流感是一种严重的呼吸道疾病,持续威胁着全球健康。众所周知,肠道微生物群调节宿主对流感感染的反应,但机制细节仍知之甚少。在这里,我们利用致死剂量 50(LD)现象和宏基因组测序分析来鉴定特定的抗流感肠道微生物,并分析其潜在机制。
将从感染致命性流感 H7N9 的小鼠中存活下来的粪便微生物转移到接受抗生素治疗的小鼠中,可使其对感染产生抵抗力。一些肠道微生物根据感染结果表现出不同的特征,与死亡或模拟感染的小鼠相比,双歧杆菌假长和双歧杆菌动物水平在存活的小鼠中显著升高。单独口服 B. animalis 或两者的组合可显著降低抗生素处理和无菌小鼠中 H7N9 感染的严重程度。功能宏基因组分析表明,B. animalis 通过几种特定的代谢分子介导抗流感作用。体内试验证实缬氨酸和辅酶 A 具有抗流感作用。
这些发现表明流感感染的严重程度与肠道微生物群的异质反应密切相关。我们证明了 B. animalis 的抗流感作用,并且还发现,当发生致命性流感感染时,内源性 B. animalis 的肠道种群可以扩大,从而增强宿主对流感的抵抗力,这代表了宿主和肠道微生物群之间的一种新的相互作用。此外,我们的数据表明双歧杆菌在预防和作为流感预后预测指标方面具有潜在的应用价值。