Suppr超能文献

一种用于银基神经形态器件的可扩展解决方案方法。

A scalable solution recipe for a Ag-based neuromorphic device.

作者信息

Rao Tejaswini S, Mondal Indrajit, Bannur Bharath, Kulkarni Giridhar U

机构信息

Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.

出版信息

Discov Nano. 2023 Oct 9;18(1):124. doi: 10.1186/s11671-023-03906-5.

Abstract

Integration and scalability have posed significant problems in the advancement of brain-inspired intelligent systems. Here, we report a self-formed Ag device fabricated through a chemical dewetting process using an Ag organic precursor, which offers easy processing, scalability, and flexibility to address the above issues to a certain extent. The conditions of spin coating, precursor dilution, and use of solvents were varied to obtain different dewetted structures (broadly classified as bimodal and nearly unimodal). A microscopic study is performed to obtain insight into the dewetting mechanism. The electrical behavior of selected bimodal and nearly unimodal devices is related to the statistical analysis of their microscopic structures. A capacitance model is proposed to relate the threshold voltage (V) obtained electrically to the various microscopic parameters. Synaptic functionalities such as short-term potentiation (STP) and long-term potentiation (LTP) were emulated in a representative nearly unimodal and bimodal device, with the bimodal device showing a better performance. One of the cognitive behaviors, associative learning, was emulated in a bimodal device. Scalability is demonstrated by fabricating more than 1000 devices, with 96% exhibiting switching behavior. A flexible device is also fabricated, demonstrating synaptic functionalities (STP and LTP).

摘要

集成性和可扩展性在受脑启发的智能系统发展过程中带来了重大问题。在此,我们报告一种通过使用银有机前驱体的化学去湿工艺制备的自形成银器件,该器件在一定程度上具有易于加工、可扩展性和灵活性,能够解决上述问题。通过改变旋涂条件、前驱体稀释度和溶剂使用情况,获得了不同的去湿结构(大致分为双峰和近单峰)。进行了微观研究以深入了解去湿机制。所选双峰和近单峰器件的电学行为与其微观结构的统计分析相关。提出了一个电容模型,将电学上获得的阈值电压(V)与各种微观参数联系起来。在一个具有代表性的近单峰和双峰器件中模拟了诸如短期增强(STP)和长期增强(LTP)等突触功能,双峰器件表现出更好的性能。在一个双峰器件中模拟了一种认知行为——联想学习。通过制造1000多个器件证明了可扩展性,其中96%表现出开关行为。还制造了一个柔性器件,展示了突触功能(STP和LTP)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df08/10562349/04f447ace79f/11671_2023_3906_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验