Suppr超能文献

记忆印迹体的断层扫描成像于自组织纳米线连接组中。

Tomography of memory engrams in self-organizing nanowire connectomes.

机构信息

Advanced Materials Metrology and Life Sciences Division, INRiM (Istituto Nazionale di Ricerca Metrologica), Strada delle Cacce 91, 10135, Torino, Italy.

Quantum Metrology and Nanotechnologies Division, INRiM (Istituto Nazionale di Ricerca Metrologica), Strada delle Cacce 91, 10135, Torino, Italy.

出版信息

Nat Commun. 2023 Sep 27;14(1):5723. doi: 10.1038/s41467-023-40939-x.

Abstract

Self-organizing memristive nanowire connectomes have been exploited for physical (in materia) implementation of brain-inspired computing paradigms. Despite having been shown that the emergent behavior relies on weight plasticity at single junction/synapse level and on wiring plasticity involving topological changes, a shift to multiterminal paradigms is needed to unveil dynamics at the network level. Here, we report on tomographical evidence of memory engrams (or memory traces) in nanowire connectomes, i.e., physicochemical changes in biological neural substrates supposed to endow the representation of experience stored in the brain. An experimental/modeling approach shows that spatially correlated short-term plasticity effects can turn into long-lasting engram memory patterns inherently related to network topology inhomogeneities. The ability to exploit both encoding and consolidation of information on the same physical substrate would open radically new perspectives for in materia computing, while offering to neuroscientists an alternative platform to understand the role of memory in learning and knowledge.

摘要

自组织的忆阻器纳米线连接组已被用于物理(材料)实现脑启发计算范例。尽管已经表明,涌现行为依赖于单个结/突触水平的权重可塑性以及涉及拓扑变化的连线可塑性,但需要向多终端范例转变,以揭示网络级别的动态。在这里,我们报告了纳米线连接组中记忆痕迹(或记忆痕迹)的断层扫描证据,即生物神经基质中的物理化学变化,据推测这些变化赋予了大脑中存储的经验的表示。一种实验/建模方法表明,空间相关的短期可塑性效应可以转化为与网络拓扑不均匀性固有相关的持久记忆痕迹模式。能够在同一物理基底上同时利用信息的编码和巩固,将为材料计算开辟全新的视角,同时为神经科学家提供一个替代平台来理解记忆在学习和知识中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edfe/10533552/6fe5ed063930/41467_2023_40939_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验