Suppr超能文献

2015 年至 2016 年巴西东北部寨卡病毒流行发病率的新估计:基于吉兰-巴雷综合征(GBS)监测数据的建模分析。

New estimates of the Zika virus epidemic attack rate in Northeastern Brazil from 2015 to 2016: A modelling analysis based on Guillain-Barré Syndrome (GBS) surveillance data.

机构信息

Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China.

Division of Biostatistics, JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China.

出版信息

PLoS Negl Trop Dis. 2020 Apr 29;14(4):e0007502. doi: 10.1371/journal.pntd.0007502. eCollection 2020 Apr.

Abstract

BACKGROUND

Between January 2015 and August 2016, two epidemic waves of Zika virus (ZIKV) disease swept the Northeastern (NE) region of Brazil. As a result, two waves of Guillain-Barré Syndrome (GBS) were observed concurrently. The mandatory reporting of ZIKV disease began region-wide in February 2016, and it is believed that ZIKV cases were significantly under-reported before that. The changing reporting rate has made it difficult to estimate the ZIKV infection attack rate, and studies in the literature vary widely from 17% to > 50%. The same applies to other key epidemiological parameters. In contrast, the diagnosis and reporting of GBS cases were reasonably reliable given the severity and easy recognition of the disease symptoms. In this paper, we aim to estimate the real number of ZIKV cases (i.e., the infection attack rate) and their dynamics in time, by scaling up from GBS surveillance data in NE Brazil.

METHODOLOGY

A mathematical compartmental model is constructed that makes it possible to infer the true epidemic dynamics of ZIKV cases based on surveillance data of excess GBS cases. The model includes the possibility that asymptomatic ZIKV cases are infectious. The model is fitted to the GBS surveillance data and the key epidemiological parameters are inferred by using a plug-and-play likelihood-based estimation. We make use of regional weather data to determine possible climate-driven impacts on the reproductive number [Formula: see text], and to infer the true ZIKV epidemic dynamics.

FINDINGS AND CONCLUSIONS

The GBS surveillance data can be used to study ZIKV epidemics and may be appropriate when ZIKV reporting rates are not well understood. The overall infection attack rate (IAR) of ZIKV is estimated to be 24.1% (95% confidence interval: 17.1%-29.3%) of the population. By examining various asymptomatic scenarios, the IAR is likely to be lower than 33% over the two ZIKV waves. The risk rate from symptomatic ZIKV infection to develop GBS was estimated as ρ = 0.0061% (95% CI: 0.0050%-0.0086%) which is significantly less than current estimates. We found a positive association between local temperature and the basic reproduction number, [Formula: see text]. Our analysis revealed that asymptomatic infections affect the estimation of ZIKV epidemics and need to also be carefully considered in related modelling studies. According to the estimated effective reproduction number and population wide susceptibility, we comment that a ZIKV outbreak would be unlikely in NE Brazil in the near future.

摘要

背景

2015 年 1 月至 2016 年 8 月期间,寨卡病毒(ZIKV)疫情在巴西东北部(NE)地区爆发了两波。结果,同时观察到两波吉兰-巴雷综合征(GBS)。自 2016 年 2 月起,ZIKV 疾病的强制报告在全地区范围内开始实施,此前人们认为 ZIKV 病例报告严重不足。报告率的变化使得估计 ZIKV 感染发病率变得困难,文献中的研究差异很大,从 17%到>50%不等。其他关键流行病学参数也是如此。相比之下,鉴于疾病症状的严重性和易识别性,GBS 病例的诊断和报告相当可靠。在本文中,我们旨在通过从巴西东北部的 GBS 监测数据中进行扩展,估计 ZIKV 病例的实际数量(即感染发病率)及其随时间的动态变化。

方法

构建了一个数学 compartmental 模型,该模型可以根据 GBS 病例的超额监测数据推断出 ZIKV 病例的真实流行动态。该模型包括无症状 ZIKV 病例具有传染性的可能性。该模型拟合 GBS 监测数据,并使用基于插件的似然估计来推断关键的流行病学参数。我们利用区域气象数据来确定气候对繁殖数[公式:见正文]的可能影响,并推断出真实的 ZIKV 流行动态。

发现和结论

GBS 监测数据可用于研究 ZIKV 流行情况,在不了解 ZIKV 报告率的情况下可能是合适的。ZIKV 的总体感染发病率(IAR)估计为人群的 24.1%(95%置信区间:17.1%-29.3%)。通过检查各种无症状情况,在两波 ZIKV 疫情中,IAR 很可能低于 33%。从有症状的 ZIKV 感染发展为 GBS 的风险率估计为 ρ=0.0061%(95%CI:0.0050%-0.0086%),明显低于当前的估计值。我们发现当地温度与基本繁殖数[公式:见正文]之间存在正相关关系。我们的分析表明,无症状感染会影响 ZIKV 疫情的估计,因此在相关建模研究中也需要仔细考虑。根据估计的有效繁殖数和人群的易感性,我们评论说 ZIKV 爆发在巴西东北部不太可能在不久的将来发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d644/7213748/28a51de6d407/pntd.0007502.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验