Suppr超能文献

一种从 AERS 报告中提取药物-药物相互作用的改进型 Skip-Gram 算法。

A Modified Skip-Gram Algorithm for Extracting Drug-Drug Interactions from AERS Reports.

机构信息

Department of Medical Informatics, Medical School, Nantong University, Nantong 226001, China.

Research Center for Intelligence Information Technology, Nantong University, Nantong 226001, China.

出版信息

Comput Math Methods Med. 2020 Apr 13;2020:1747413. doi: 10.1155/2020/1747413. eCollection 2020.

Abstract

Drug-drug interactions (DDIs) are one of the indispensable factors leading to adverse event reactions. Considering the unique structure of AERS (Food and Drug Administration Adverse Event Reporting System (FDA AERS)) reports, we changed the scope of the window value in the original skip-gram algorithm, then propose a language concept representation model and extract features of drug name and reaction information from large-scale AERS reports. The validation of our scheme was tested and verified by comparing with vectors originated from the cooccurrence matrix in tenfold cross-validation. In the verification of description enrichment of the DrugBank DDI database, accuracy was calculated for measurement. The average area under the receiver operating characteristic curve of logistic regression classifiers based on the proposed language model is 6% higher than that of the cooccurrence matrix. At the same time, the average accuracy in five severe adverse event classes is 88%. These results indicate that our language model can be useful for extracting drug and reaction features from large-scale AERS reports.

摘要

药物-药物相互作用(DDI)是导致不良事件反应的不可或缺的因素之一。考虑到 AERS(美国食品和药物管理局不良事件报告系统(FDA AERS))报告的独特结构,我们改变了原始 skip-gram 算法中窗口值的范围,然后提出了一种语言概念表示模型,并从大规模 AERS 报告中提取药物名称和反应信息的特征。我们的方案通过与十折交叉验证中的共现矩阵生成的向量进行比较来进行测试和验证。在验证 DrugBank DDI 数据库的描述丰富度时,我们进行了准确性测量。基于所提出的语言模型的逻辑回归分类器的接收者操作特征曲线的平均面积比共现矩阵高 6%。同时,在五个严重不良事件类别中的平均准确率为 88%。这些结果表明,我们的语言模型可用于从大规模 AERS 报告中提取药物和反应特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3203/7174925/eef4b1db87e2/CMMM2020-1747413.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验