Wallach Daniel, Mearns Linda O, Ruane Alex C, Rötter Reimund P, Asseng Senthold
1INRA, UMR AGIR, Castanet Tolosan, France.
2National Center for Atmospheric Research, Boulder, CO USA.
Clim Change. 2016;139(3):551-564. doi: 10.1007/s10584-016-1803-1. Epub 2016 Sep 15.
Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.
使用作物模型集合是作物建模领域近期一项重要的发展,有望为模型预测和预估带来更优的不确定性估计,利用集合均值或中位数实现更精准的预测,并促进建模群体内部更紧密的协作。关于创建和分析此类集合的最佳方式,存在诸多悬而未决的问题。鉴于气候建模在集合方面拥有更长时间的经验,我们可以从该领域学到很多东西。我们借鉴其经验来识别问题并提出建议,这些建议应有助于使作物模型的集合建模更加严谨且信息丰富。这些建议包括为作物多模型集合(MME)中的模型接受定义标准,探索评估MME中模型相关程度的标准,研究集合中模型数量的影响,开发模型抽样的统计模型,创建MME结果存储库,研究集合中模型可能的差异加权,基于从参数值或输入的不确定性分布中抽样创建单模型集合,特别是针对不确定性估计,创建对多种不确定性来源进行抽样的超级集合,分析超级集合结果以获取关于总不确定性以及不同不确定性来源各自贡献的信息,最后进一步研究使用多模型均值或中位数作为预测器的情况。