Smolentsev Grigory, Milne Christopher J, Guda Alexander, Haldrup Kristoffer, Szlachetko Jakub, Azzaroli Nicolo, Cirelli Claudio, Knopp Gregor, Bohinc Rok, Menzi Samuel, Pamfilidis Georgios, Gashi Dardan, Beck Martin, Mozzanica Aldo, James Daniel, Bacellar Camila, Mancini Giulia F, Tereshchenko Andrei, Shapovalov Victor, Kwiatek Wojciech M, Czapla-Masztafiak Joanna, Cannizzo Andrea, Gazzetto Michela, Sander Mathias, Levantino Matteo, Kabanova Victoria, Rychagova Elena, Ketkov Sergey, Olaru Marian, Beckmann Jens, Vogt Matthias
Paul Scherrer Institute, 5232, Villigen, Switzerland.
The Smart Materials Research Institute, Southern Federal University, 344090, Rostov-on-Don, Russia.
Nat Commun. 2020 May 1;11(1):2131. doi: 10.1038/s41467-020-15998-z.
OLED technology beyond small or expensive devices requires light-emitters, luminophores, based on earth-abundant elements. Understanding and experimental verification of charge transfer in luminophores are needed for this development. An organometallic multicore Cu complex comprising Cu-C and Cu-P bonds represents an underexplored type of luminophore. To investigate the charge transfer and structural rearrangements in this material, we apply complementary pump-probe X-ray techniques: absorption, emission, and scattering including pump-probe measurements at the X-ray free-electron laser SwissFEL. We find that the excitation leads to charge movement from C- and P- coordinated Cu sites and from the phosphorus atoms to phenyl rings; the Cu core slightly rearranges with 0.05 Å increase of the shortest Cu-Cu distance. The use of a Cu cluster bonded to the ligands through C and P atoms is an efficient way to keep structural rigidity of luminophores. Obtained data can be used to verify computational methods for the development of luminophores.
超越小型或昂贵设备的OLED技术需要基于储量丰富元素的发光体、荧光团。这种发展需要对荧光团中的电荷转移进行理解和实验验证。一种包含Cu-C和Cu-P键的有机金属多核铜配合物代表了一种尚未充分探索的荧光团类型。为了研究这种材料中的电荷转移和结构重排,我们应用了互补的泵浦-探测X射线技术:吸收、发射和散射,包括在X射线自由电子激光SwissFEL上进行的泵浦-探测测量。我们发现,激发导致电荷从C和P配位的Cu位点以及从磷原子转移到苯环;Cu核略有重排,最短Cu-Cu距离增加了0.05 Å。使用通过C和P原子与配体键合的Cu簇是保持荧光团结构刚性的有效方法。获得的数据可用于验证荧光团开发的计算方法。