Suppr超能文献

预测放射性心脏毒性的血浆代谢生物标志物。

Plasma metabolite biomarkers predictive of radiation induced cardiotoxicity.

机构信息

Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington D.C., United States.

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington D.C., United States.

出版信息

Radiother Oncol. 2020 Nov;152:133-145. doi: 10.1016/j.radonc.2020.04.018. Epub 2020 Apr 20.

Abstract

PURPOSE

Although advancements in cancer treatments using radiation therapy (RT) have led to improved outcomes, radiation-induced heart disease (RIHD) remains a significant source of morbidity and mortality in survivors of cancers in the chest. Currently, there are no diagnostic tests in clinical use due to a lack of understanding of the natural history and mechanisms of RIHD development. Few studies have examined the utility of using metabolomics to prospectively identify cancer survivors who are at risk of developing cardiotoxicity.

METHODS

We analyzed plasma and left ventricle heart tissue samples collected from a cohort of male Sprague Dawley (SD) rats that were either sham irradiated or received fractionated doses (9 Gy per day × 5 days) of targeted X-ray radiation to the heart. Metabolomic and lipidomic analyses were utilized as a correlative approach for delineation of novel biomarkers associated with radiation-induced cardiac toxicity. Additionally, we used high-resolution mass spectrometry to examine the metabolomic profiles of plasma samples obtained from patients receiving high dose thoracic RT for esophageal cancer.

RESULTS

Metabolic alterations in the rat model and patient plasma profiles, showed commonalities of radiation response that included steroid hormone biosynthesis and vitamin E metabolism. Alterations in patient plasma profiles were used to develop classification algorithms predictive of patients at risk of developing RIHD.

CONCLUSION

Herein, we report the feasibility of developing a metabolomics-based biomarker panel that is associated with adverse outcomes of cardiac function in patients who received RT for the treatment of esophageal cancer.

摘要

目的

尽管癌症放射治疗(RT)技术的进步提高了治疗效果,但放射性心脏病(RIHD)仍然是胸部癌症幸存者发病率和死亡率的一个重要原因。目前,由于对 RIHD 发展的自然史和机制缺乏了解,临床上没有诊断测试。很少有研究探讨使用代谢组学来前瞻性地识别有发生心脏毒性风险的癌症幸存者的效用。

方法

我们分析了来自一组雄性 Sprague Dawley(SD)大鼠的血浆和左心室心脏组织样本,这些大鼠要么接受假照射,要么接受靶向 X 射线辐射的分次剂量(每天 9 Gy × 5 天)至心脏。代谢组学和脂质组学分析被用作一种关联方法,用于描绘与放射性心脏毒性相关的新型生物标志物。此外,我们使用高分辨率质谱法检查了接受高剂量胸部 RT 治疗食管癌的患者的血浆样本的代谢组学特征。

结果

大鼠模型和患者血浆特征中的代谢改变显示出对辐射反应的共同性,包括甾体激素生物合成和维生素 E 代谢。患者血浆特征的改变被用于开发预测有发生 RIHD 风险的患者的分类算法。

结论

本文报告了开发基于代谢组学的生物标志物面板的可行性,该标志物与接受 RT 治疗食管癌的患者心脏功能不良结局相关。

相似文献

1
Plasma metabolite biomarkers predictive of radiation induced cardiotoxicity.预测放射性心脏毒性的血浆代谢生物标志物。
Radiother Oncol. 2020 Nov;152:133-145. doi: 10.1016/j.radonc.2020.04.018. Epub 2020 Apr 20.
3
A novel technique for image-guided local heart irradiation in the rat.一种用于大鼠图像引导局部心脏照射的新技术。
Technol Cancer Res Treat. 2014 Dec;13(6):593-603. doi: 10.7785/tcrtexpress.2013.600256. Epub 2013 Aug 31.
4
Cardiovascular Complications Associated with Mediastinal Radiation.与纵隔放疗相关的心血管并发症
Curr Treat Options Cardiovasc Med. 2019 Jun 4;21(7):31. doi: 10.1007/s11936-019-0737-0.

引用本文的文献

4
Serum metabolomics of treatment response in myasthenia gravis.重症肌无力治疗反应的血清代谢组学。
PLoS One. 2023 Oct 10;18(10):e0287654. doi: 10.1371/journal.pone.0287654. eCollection 2023.
5
Advances in Screening for Radiation-Associated Cardiotoxicity in Cancer Patients.癌症患者放射性心脏毒性的筛查进展。
Curr Cardiol Rep. 2023 Nov;25(11):1589-1600. doi: 10.1007/s11886-023-01971-x. Epub 2023 Oct 5.

本文引用的文献

1
Management of Cardiovascular Disease in Women With Breast Cancer.乳腺癌女性心血管疾病的管理。
Circulation. 2019 Feb 19;139(8):1110-1120. doi: 10.1161/CIRCULATIONAHA.118.039371.
2
The Reactome Pathway Knowledgebase.Reactome 通路知识库。
Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655. doi: 10.1093/nar/gkx1132.
3
Radiation-Induced Cardiovascular Disease: A Clinical Perspective.辐射诱发的心血管疾病:临床视角
Front Cardiovasc Med. 2017 Oct 26;4:66. doi: 10.3389/fcvm.2017.00066. eCollection 2017.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验