Suppr超能文献

基于四种长链非编码RNA表达特征预测肝细胞癌的生存情况

The Prediction of Survival in Hepatocellular Carcinoma Based on A Four Long Non-coding RNAs Expression Signature.

作者信息

Yang Zongxing, Yang Yuhan, Zhou Gang, Luo Yan, Yang Wenjun, Zhou Youliang, Yang Jin

机构信息

The Second Department of Infectious Disease, Xixi Hospital of Hangzhou, the Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310023, P.R. China.

Center for Translational Medicine, the affiliated hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China.

出版信息

J Cancer. 2020 Apr 12;11(14):4132-4144. doi: 10.7150/jca.40621. eCollection 2020.

Abstract

Prognostic stratification in hepatocellular carcinoma (HCC) patients is still challenging. Long non-coding RNAs (lncRNAs) have been proven to play a crucial role in tumorigenesis and progression of cancers. The aim of this study is to develop a useful prognostic index based on lncRNA signature to identify patients at high risk of disease progression. We obtained lncRNA expression profiles from three publicly available datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). By the risk scoring method, we built an individualized four-lncRNA signature (HCCLnc-4) to predict survival of HCC patients in the discovery set (ROC curve, AUC: 0.83, 95% CI: 0.65-1.00, < 0.05, Kaplan-Meier analysis and log-rank test, < 0.01). Similar prognostic value of HCCLnc-4 has been further verified in two other independent sets. Stratified analysis and multivariate Cox regression analysis suggested the independence of HCCLnc-4 for prediction of HCC patient survival from traditional clinicopathological factors. Area under curve (AUC) analysis suggested that HCCLnc-4 could compete sufficiently with, or might be even better than classical pathological staging systems to predict HCC patient prognosis in the same data sets. Functional analysis and network analysis suggested the potential implication of lncRNA biomarkers. Our study developed and validated the lncRNA prognostic index of HCC patients, warranting further clinical evaluation and preventive interventions.

摘要

肝细胞癌(HCC)患者的预后分层仍然具有挑战性。长链非编码RNA(lncRNAs)已被证明在癌症的发生和发展中起关键作用。本研究的目的是基于lncRNA特征开发一种有用的预后指标,以识别疾病进展风险高的患者。我们从基因表达综合数据库(GEO)和癌症基因组图谱(TCGA)的三个公开可用数据集中获得了lncRNA表达谱。通过风险评分方法,我们构建了一个个性化的四lncRNA特征(HCCLnc-4),以预测发现集中HCC患者的生存情况(ROC曲线,AUC:0.83,95%CI:0.65-1.00,<0.05,Kaplan-Meier分析和对数秩检验,<0.01)。HCCLnc-4的类似预后价值在另外两个独立数据集中得到了进一步验证。分层分析和多变量Cox回归分析表明,HCCLnc-4在预测HCC患者生存方面独立于传统临床病理因素。曲线下面积(AUC)分析表明,在相同数据集中,HCCLnc-4在预测HCC患者预后方面可以与经典病理分期系统充分竞争,甚至可能更好。功能分析和网络分析表明了lncRNA生物标志物的潜在意义。我们的研究开发并验证了HCC患者的lncRNA预后指标,值得进一步的临床评估和预防性干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbde/7196252/3ffd701e9b17/jcav11p4132g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验