Suppr超能文献

利用多等位基因单体型预测和小麦训练群体优化提高预测准确性。

Improving Prediction Accuracy Using Multi-allelic Haplotype Prediction and Training Population Optimization in Wheat.

机构信息

Department of Plant Pathology.

Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108.

出版信息

G3 (Bethesda). 2020 Jul 7;10(7):2265-2273. doi: 10.1534/g3.120.401165.

Abstract

The use of haplotypes may improve the accuracy of genomic prediction over single SNPs because haplotypes can better capture linkage disequilibrium and genomic similarity in different lines and may capture local high-order allelic interactions. Additionally, prediction accuracy could be improved by portraying population structure in the calibration set. A set of 383 advanced lines and cultivars that represent the diversity of the University of Minnesota wheat breeding program was phenotyped for yield, test weight, and protein content and genotyped using the Illumina 90K SNP Assay. Population structure was confirmed using single SNPs. Haplotype blocks of 5, 10, 15, and 20 adjacent markers were constructed for all chromosomes. A multi-allelic haplotype prediction algorithm was implemented and compared with single SNPs using both -fold cross validation and stratified sampling optimization. After confirming population structure, the stratified sampling improved the predictive ability compared with -fold cross validation for yield and protein content, but reduced the predictive ability for test weight. In all cases, haplotype predictions outperformed single SNPs. Haplotypes of 15 adjacent markers showed the best improvement in accuracy for all traits; however, this was more pronounced in yield and protein content. The combined use of haplotypes of 15 adjacent markers and training population optimization significantly improved the predictive ability for yield and protein content by 14.3 (four percentage points) and 16.8% (seven percentage points), respectively, compared with using single SNPs and -fold cross validation. These results emphasize the effectiveness of using haplotypes in genomic selection to increase genetic gain in self-fertilized crops.

摘要

利用单倍型可以提高基因组预测的准确性,超过单个 SNP,因为单倍型可以更好地捕捉不同系之间的连锁不平衡和基因组相似性,并且可以捕捉局部高阶等位基因相互作用。此外,通过描绘校准集中的群体结构可以提高预测精度。一组 383 个高级系和品种,代表了明尼苏达大学小麦育种计划的多样性,用于产量、测试重量和蛋白质含量的表型,并使用 Illumina 90K SNP 测定进行基因型分析。使用单 SNP 确认了群体结构。为所有染色体构建了 5、10、15 和 20 个相邻标记的单倍型块。实现了多等位基因单倍型预测算法,并使用 -fold 交叉验证和分层抽样优化与单 SNP 进行了比较。在确认群体结构后,与 -fold 交叉验证相比,分层抽样提高了产量和蛋白质含量的预测能力,但降低了测试重量的预测能力。在所有情况下,单倍型预测都优于单 SNP。对于所有性状,15 个相邻标记的单倍型表现出最佳的准确性提高;然而,在产量和蛋白质含量方面更为明显。15 个相邻标记的单倍型和训练群体优化的组合使用分别显著提高了产量和蛋白质含量的预测能力 14.3%(四个百分点)和 16.8%(七个百分点),与使用单 SNP 和 -fold 交叉验证相比。这些结果强调了在自花授粉作物的基因组选择中使用单倍型来增加遗传增益的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/130a/7341132/5b1b246cf104/2265f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验